-
Naunyn Schmiedebergs Arch. Pharmacol. · Oct 2002
Nitric oxide is not involved in the endotoxemia-induced alterations in Ca2+ and ryanodine responses in mouse diaphragms.
- Shing-Hwa Liu, Jiun-Li Lai, Rong-Sen Yang, and Shoei-Yn Lin-Shiau.
- Institute of Toxicology, College of Medicine, National Taiwan University, No. 1, Jen-Ai Road, Section 1, Taipei 10043, Taiwan. shliu@ha.mc.ntu.edu.tw
- Naunyn Schmiedebergs Arch. Pharmacol. 2002 Oct 1;366(4):327-34.
AbstractLipopolysaccharide (LPS, endotoxin)-induced diaphragmatic contractile dysfunction and sarcolemmal injury in animals has been identified. However, the precise nature of sepsis-related alterations in diaphragm myofiber function and the activity of Ca(2+) release from sarcoplasmic reticulum of skeletal muscle remain unclear. The present study investigated the in vivo effects of LPS on the Ca(2+)-dependent mechanical activity and ryanodine response in mouse diaphragm and Ca(2+) release from isolated sarcoplasmic reticulum membrane vesicles, and aimed to examine the role of nitric oxide (NO) in these responses. When diaphragms were bathed in a solution that was Cl(-)-free, Na(+)-free, but contained high K(+), a Ca(2+)-induced contracture was elicited. Increases in external Ca(2+) concentration produced increases in peak tension of Ca(2+)-induced contracture in control diaphragm, while a decrease was seen in endotoxemic diaphragm. Ryanodine induced a marked contracture in control diaphragms, which was diminished after endotoxemia. This finding is correlated with the decrease of ryanodine-induced Ca(2+) release and the suppression of [(3)H]ryanodine binding on the isolated SR of the skeletal muscle from LPS-treated rats. In mice treated with LPS significantly increased levels of plasma nitrite and serum TNF-alpha were observed, changes inhibited by aminoguanidine [an inhibitor of inducible NO synthase (iNOS)] and pentoxifylline (an inhibitor of tumor necrosis factor-alpha formation), respectively. Moreover, LPS treatment resulted in a significant expression of mRNA for iNOS in mouse diaphragms. The inhibitory effects on Ca(2+)- and ryanodine responses by LPS could be prevented by treatment with polymyxin B (LPS neutralizer) and pentoxifylline, but not by treatment with dexamethasone, N(G)-nitro- L-arginine or aminoguanidine (NOS inhibitors). These results imply that the NO-related pathway may not be involved in the dysfunction of the Ca(2+) release mechanism in the sarcoplasmic reticulum of mouse diaphragm during endotoxemia.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.