• J. Neurophysiol. · Aug 2001

    Enhanced responses of spinal dorsal horn neurons to heat and cold stimuli following mild freeze injury to the skin.

    • S G Khasabov, D M Cain, D Thong, P W Mantyh, and D A Simone.
    • Department of Preventive Science, Schools of Dentistry and Medicine, University of Minnesota, Minneapolis 55455, USA.
    • J. Neurophysiol. 2001 Aug 1;86(2):986-96.

    AbstractThe effects of a mild freeze injury to the skin on responses of nociceptive dorsal horn neurons to cold and heat stimuli were examined in anesthetized rats. Electrophysiological recordings were obtained from 72 nociceptive spinal neurons located in the superficial and deep dorsal horn. All neurons had receptive fields (RFs) on the glabrous skin of the hindpaw, and neurons were functionally divided into wide dynamic range (WDR) and high-threshold (HT) neurons. Forty-four neurons (61%) were classified as WDR and responded to both innocuous and noxious mechanical stimuli (mean mechanical threshold of 12.8 +/- 1.6 mN). Twenty-eight neurons (39%) were classified as HT and were excited only by noxious mechanical stimuli (mean mechanical threshold of 154.2 +/- 18.3 mN). Neurons were characterized for their sensitivity heat (35 to 51 degrees C) and cold (28 to -12 degrees C) stimuli applied to their RF. Among WDR neurons, 86% were excited by both noxious heat and cold stimuli, while 14% responded only to heat. For HT neurons, 61% responded to heat and cold stimuli, 32% responded only to noxious heat, and 7% responded only to noxious cold. Effects of a mild freeze injury (-15 degrees C applied to the RF for 20 s) on responses to heat and cold stimuli were examined in 30 WDR and 22 HT neurons. Skin freezing was verified as an abrupt increase in skin temperature at the site of injury due to the exothermic reaction associated with crystallization. Freezing produced a decrease in response thresholds to heat and cold stimuli in most WDR and HT neurons. WDR and HT neurons exhibited a mean decrease in response threshold for cold of 9.0 +/- 1.3 degrees C and 10.0 +/- 1.6 degrees C, respectively. Mean response thresholds for heat decreased 4.0 +/- 0.4 degrees C and 4.3 +/- 1.3 degrees C in WDR and HT neurons, respectively. In addition, responses to suprathreshold cold and heat stimuli increased. WDR and HT neurons exhibited an 89% and a 192% increase in response across all cold stimuli, and a 93 and 92% increase in responses evoked across all heat stimuli, respectively. Our results demonstrate that many spinal neurons encode intensity of noxious cold as well as noxious heat over a broad range of stimulus temperatures. Enhanced responses of WDR and HT neurons to cold and heat stimuli after a mild freeze injury is likely to contribute to thermal hyperalgesia following a similar freeze injury in humans.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.