• Der Anaesthesist · Sep 1996

    [Is reduction of intraoperative heat loss and management of hypothermic patients with anesthetic gas climate control advisable? Heat and humidity exchangers vs. active humidifiers ina functional lung model].

    • J Rathgeber, W Weyland, T Bettka, K Züchner, and D Kettler.
    • Zentrum Anaesthesiologie, Rettungs- und Intensivmedizin, Georg-August-Universität Göttingen.
    • Anaesthesist. 1996 Sep 1; 45 (9): 807-13.

    UnlabelledHeated humidifiers (HH) as well as heat and moisture exchangers (HME) are commonly used in intubated patients as air-conditioning devices to raise the moisture content of the air, thus preventing mucosal damage and heat loss resulting from ventilation with dry inspired gases. In contrary to HME, HH are able to add heat and moisture to the inspired air in surplus, which is often stressed as an advantage in warming hypothermic patients or reducing major heat losses, e.g., during long operations. The impact of air conditioning on the energy balance of man was calculated comparing HME and HH.MethodsThe efficiency of a HME (Medisize Hygrovent) and a HH (Fisher & Paykel MR 730) was evaluated in a mechanically ventilated lung model simulating the physiological heat and humidity conditions of the upper airways. The gas flow from the central supply was dry; the model temperature varied between 32 and 40 degrees C. By using a HH in the inspiratory limb, a circle system was simulated with water-saturated inspired air at room temperature. The water content of the ventilated air was determined at the tracheal tube connection using a fast, high-resolution humidity meter and was compared with the moisture return of the HME. The energy balance was calculated according to thermodynamic laws.ResultsBoth HME and HH were able to create physiological heat and humidity conditions in the airways. With the normothermic patient model, the moisture return of the HME was equal to that of the HH set at 34 degrees C. Increasing the heating temperature resulted only in reduced water loss from the lung; heat and water input in the normothermic model was not possible. This was only effective with almost negligible amounts under hypothermic patient model conditions.DiscussionThe water content in the inspired and expired air is the most important parameter for estimating pulmonary heat loss in mechanically ventilated patients. In adults (minute volume approximately 71/min) the main fraction of pulmonary heat loss results from water evaporation from the airways (approximately 6 kcal/h), whereas the heat loss due to convection is negligible (approximately 1.2 kcal/h). In intubated patients ventilated with dry air, the heat loss increases to approximately 8 kcal/h due to greater water evaporation from the airways. Both HME and HH are able to reduce the pulmonary heat loss to 1-2 kcal/h. In normothermic as well as hypothermic patients, HH do not offer significant advantages in heat balance compared to effective HME. In conclusion, air conditioning in intubated patients is neither a powerful too for maintaining body temperature during long-lasting anaesthesia nor a sufficient method of warming hypothermic patients in intensive care units.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…