• NeuroImage · Aug 2014

    Comparative Study

    Can diffusion kurtosis imaging improve the sensitivity and specificity of detecting microstructural alterations in brain tissue chronically after experimental stroke? Comparisons with diffusion tensor imaging and histology.

    • S Umesh Rudrapatna, Tadeusz Wieloch, Kerstin Beirup, Karsten Ruscher, Wouter Mol, Pavel Yanev, Alexander Leemans, Annette van der Toorn, and Rick M Dijkhuizen.
    • Biomedical MR Imaging and Spectroscopy Group, Image Sciences Institute, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands. Electronic address: umesh@invivonmr.uu.nl.
    • Neuroimage. 2014 Aug 15;97:363-73.

    AbstractImaging techniques that provide detailed insights into structural tissue changes after stroke can vitalize development of treatment strategies and diagnosis of disease. Diffusion-weighted MRI has been playing an important role in this regard. Diffusion kurtosis imaging (DKI), a recent addition to this repertoire, has opened up further possibilities in extending our knowledge about structural tissue changes related to injury as well as plasticity. In this study we sought to discern the microstructural alterations characterized by changes in diffusion tensor imaging (DTI) and DKI parameters at a chronic time point after experimental stroke. Of particular interest was the question of whether DKI parameters provide additional information in comparison to DTI parameters in understanding structural tissue changes, and if so, what their histological origins could be. Region-of-interest analysis and a data-driven approach to identify tissue abnormality were adopted to compare DTI- and DKI-based parameters in post mortem rat brain tissue, which were compared against immunohistochemistry of various cellular characteristics. The unilateral infarcted area encompassed the ventrolateral cortex and the lateral striatum. Results from region-of-interest analysis in the lesion borderzone and contralateral tissue revealed significant differences in DTI and DKI parameters between ipsi- and contralateral sensorimotor cortex, corpus callosum, internal capsule and striatum. This was reflected by a significant reduction in ipsilateral mean diffusivity (MD) and fractional anisotropy (FA) values, accompanied by significant increases in kurtosis parameters in these regions. Data-driven analysis to identify tissue abnormality revealed that the use of kurtosis-based parameters improved the detection of tissue changes in comparison with FA and MD, both in terms of dynamic range and in being able to detect changes to which DTI parameters were insensitive. This was observed in gray as well as white matter. Comparison against immunohistochemical stainings divulged no straightforward correlation between diffusion-based parameters and individual neuronal, glial or inflammatory tissue features. Our study demonstrates that DKI allows sensitive detection of structural tissue changes that reflect post-stroke tissue remodeling. However, our data also highlights the generic difficulty in unambiguously asserting specific causal relationships between tissue status and MR diffusion parameters.Copyright © 2014 Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…