-
Comput Methods Programs Biomed · Feb 2010
Performance evaluation and enhancement of lung sound recognition system in two real noisy environments.
- Gwo-Ching Chang and Yung-Fa Lai.
- Department of Information Engineering, I-Shou University, No. 1, Sec. 1, Syuecheng Rd., Dashu Township, Kaohsiung County 840, Taiwan, ROC. cgc@isu.edu.tw
- Comput Methods Programs Biomed. 2010 Feb 1;97(2):141-50.
AbstractThis study investigates the problems associated with lung sound recognition under noisy conditions. Firstly, the effects of noise on the lung sound feature representation and the classification performance are analyzed. Two kinds of feature representations, autoregressive and mel-frequency cepstral coefficients, are used to characterize the lung sound signals. Dynamic time warping is used to categorize the lung sounds to one of the three: normal, wheezes, or crackles. Our experimental results indicate that additive noise produces a mismatch between training and recognition environments and deteriorates the classification performance with a decrease in the SNR levels. In order to compensate the degrading effect of noise on the lung sound recognition, a dual sensor spectral subtraction algorithm is applied to the lung sound signals before the extraction of lung sound features. It is observed that the proposed algorithm is capable of providing adequate performance in terms of noise suppression and lung sound signal enhancement.Copyright 2009 Elsevier Ireland Ltd. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.