• Circulation research · Oct 2003

    Kv1.5 is an important component of repolarizing K+ current in canine atrial myocytes.

    • David Fedida, Jodene Eldstrom, J Christian Hesketh, Michelle Lamorgese, Laurie Castel, David F Steele, and David R Van Wagoner.
    • Department of Physiology, University of British Columbia, 2146 Health Sciences Mall, Vancouver, British Columbia, Canada V6T 1Z3. fedida@interchange.ubc.ca
    • Circ. Res. 2003 Oct 17;93(8):744-51.

    AbstractAlthough the canine atrium has proven useful in several experimental models of atrial fibrillation and for studying the effects of rapid atrial pacing on atrial electrical remodeling, it may not fully represent the human condition because of reported differences in functional ionic currents and ion channel subunit expression. In this study, we reassessed the molecular components underlying one current, the ultrarapid delayed rectifier current in canine atrium [IKur(d)], by evaluating the mRNA, protein, immunofluorescence, and currents of the candidate channels. Using reverse transcriptase-polymerase chain reaction, we found that Kv1.5 mRNA was expressed in canine atrium whereas message for Kv3.1 was not detected. Western analysis on cytosolic and membrane fractions of canine tissues, using selective antibodies, showed that Kv3.1 was only detectable in the brain preparations, whereas Kv1.5 was expressed at high levels in both atrial and ventricular membrane fractions. Confocal imaging performed on isolated canine atrial myocytes clearly demonstrated the presence of Kv1.5 immunostaining, whereas that of Kv3.1 was equivocal. Voltage- and current-clamp studies showed that 0.5 mmol/L tetraethylammonium had variable effects on sustained K+ currents, whereas a compound with demonstrated selectivity for hKv1.5 versus Kv3.1, hERG or the sodium channel, fully suppressed canine atrial IKur tail currents and depressed sustained outward K+ current. This agent also increased action potential plateau potentials and action potential duration at 20% and 50% repolarization. These results suggest that in canine atria, as in other species including human, Kv1.5 protein is highly expressed and contributes to IKur.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.