Circulation research
-
Circulation research · Oct 2003
Kv1.5 is an important component of repolarizing K+ current in canine atrial myocytes.
Although the canine atrium has proven useful in several experimental models of atrial fibrillation and for studying the effects of rapid atrial pacing on atrial electrical remodeling, it may not fully represent the human condition because of reported differences in functional ionic currents and ion channel subunit expression. In this study, we reassessed the molecular components underlying one current, the ultrarapid delayed rectifier current in canine atrium [IKur(d)], by evaluating the mRNA, protein, immunofluorescence, and currents of the candidate channels. Using reverse transcriptase-polymerase chain reaction, we found that Kv1.5 mRNA was expressed in canine atrium whereas message for Kv3.1 was not detected. ⋯ Voltage- and current-clamp studies showed that 0.5 mmol/L tetraethylammonium had variable effects on sustained K+ currents, whereas a compound with demonstrated selectivity for hKv1.5 versus Kv3.1, hERG or the sodium channel, fully suppressed canine atrial IKur tail currents and depressed sustained outward K+ current. This agent also increased action potential plateau potentials and action potential duration at 20% and 50% repolarization. These results suggest that in canine atria, as in other species including human, Kv1.5 protein is highly expressed and contributes to IKur.
-
Circulation research · Oct 2003
Hypoxia-inducible factor-1 mediates activation of cultured vascular endothelial cells by inducing multiple angiogenic factors.
Hypoxia-inducible factor-1 (HIF-1) mediates transcriptional activation of vascular endothelial growth factor (VEGF) and other hypoxia-responsive genes. Transgenic expression of a constitutively stable HIF-1alpha mutant increases the number of vascular vessels without vascular leakage, tissue edema, or inflammation. This study aimed to investigate the molecular basis by which HIF-1 mediates the angiogenic response to hypoxia. ⋯ These results suggest that HIF-1 mediates the angiogenic response to hypoxia by upregulating the expression of multiple angiogenic factors. Ang-4 can function similarly as Ang-1 and substitute for Ang-1 to participate in hypoxia-induced angiogenesis. Activation of the angiopoietin/Tie-2 system may play a role in the ability of HIF-1 to induce hypervascularity without excessive permeability.