• J. Appl. Physiol. · Oct 2014

    Glial TLR4 signaling does not contribute to opioid-induced depression of respiration.

    • Jennifer D Zwicker, Yong Zhang, Jun Ren, Mark R Hutchinson, Kenner C Rice, Linda R Watkins, John J Greer, and Gregory D Funk.
    • Department of Physiology, Neuroscience and Mental Health Institute, Women and Children's Health Research Institute, Faculty of Medicine and Dentistry, University of Alberta, Edmonton, Alberta, Canada;
    • J. Appl. Physiol. 2014 Oct 15;117(8):857-68.

    AbstractOpioids activate glia in the central nervous system in part by activating the toll-like receptor 4 (TLR4)/myeloid differentiation 2 (MD2) complex. TLR4/MD2-mediated activation of glia by opioids compromises their analgesic actions. Glial activation is also hypothesized as pivotal in opioid-mediated reward and tolerance and as a contributor to opioid-mediated respiratory depression. We tested the contribution of TLR4 to opioid-induced respiratory depression using rhythmically active medullary slices that contain the pre-Bötzinger Complex (preBötC, an important site of respiratory rhythm generation) and adult rats in vivo. Injection with DAMGO (μ-opioid receptor agonist; 50 μM) or bath application of DAMGO (500 nM) or fentanyl (1 μM) slowed frequency recorded from XII nerves to 40%, 40%, or 50% of control, respectively. This DAMGO-mediated frequency inhibition was unaffected by preapplication of lipopolysaccharides from Rhodobacter sphaeroides (a TLR4 antagonist, 2,000 ng/ml) or (+)naloxone (1-10 μM, a TLR4-antagonist). Bath application of (-)naloxone (500 nM; a TLR4 and μ-opioid antagonist), however, rapidly reversed the opioid-mediated frequency decrease. We also compared the opioid-induced respiratory depression in slices in vitro in the absence and presence of bath-applied minocycline (an inhibitor of microglial activation) and in slices prepared from mice injected (ip) 18 h earlier with minocycline or saline. Minocycline had no effect on respiratory depression in vitro. Finally, the respiratory depression evoked in anesthetized rats by tail vein infusion of fentanyl was unaffected by subsequent injection of (+)naloxone, but completely reversed by (-)naloxone. These data indicate that neither activation of microglia in preBötC nor TLR4/MD2-activation contribute to opioid-induced respiratory depression.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.