Journal of applied physiology
-
Sensing skin wetness is linked to inputs arising from cutaneous cold-sensitive afferents. As thermosensitivity to cold varies significantly across the torso, we investigated whether similar regional differences in wetness perception exist. We also investigated the regional differences in thermal pleasantness and whether these sensory patterns are influenced by ambient temperature. ⋯ Significantly more unpleasant sensations were recorded when the lateral abdomen and lateral and lower back were stimulated. We conclude that humans present regional differences in skin wetness perception across the torso, with a pattern similar to the regional differences in thermosensitivity to cold. These findings indicate the presence of a heterogeneous distribution of cold-sensitive thermo-afferent information.
-
Recent work indicates that infections are a major contributor to diaphragm weakness in patients who are critically ill and mechanically ventilated, and that diaphragm weakness is a risk factor for death and prolonged mechanical ventilation. Infections activate muscle calpain, but many believe this is an epiphenomenon and that other proteolytic processes are responsible for infection-induced muscle weakness. We tested the hypothesis that muscle-specific overexpression of calpastatin (CalpOX; an endogenous calpain inhibitor) would attenuate diaphragm dysfunction in cecal ligation puncture (CLP)-induced sepsis. ⋯ CLP induced talin cleavage and reduced MHC levels; CalpOX prevented these alterations. CLP-induced sepsis rapidly reduces diaphragm-specific force generation and is associated with cleavage and/or depletion of key muscle proteins (talin, MHC), effects prevented by muscle-specific calpastatin overexpression. These data indicate that calpain activation is a major cause of diaphragm weakness in response to CLP-induced sepsis.
-
Opioids activate glia in the central nervous system in part by activating the toll-like receptor 4 (TLR4)/myeloid differentiation 2 (MD2) complex. TLR4/MD2-mediated activation of glia by opioids compromises their analgesic actions. Glial activation is also hypothesized as pivotal in opioid-mediated reward and tolerance and as a contributor to opioid-mediated respiratory depression. ⋯ Minocycline had no effect on respiratory depression in vitro. Finally, the respiratory depression evoked in anesthetized rats by tail vein infusion of fentanyl was unaffected by subsequent injection of (+)naloxone, but completely reversed by (-)naloxone. These data indicate that neither activation of microglia in preBötC nor TLR4/MD2-activation contribute to opioid-induced respiratory depression.