• Neuroscience · Mar 2010

    Sequestration of brain derived nerve factor by intravenous delivery of TrkB-Ig2 reduces bladder overactivity and noxious input in animals with chronic cystitis.

    • R Pinto, B Frias, S Allen, D Dawbarn, S B McMahon, F Cruz, and C D Cruz.
    • Instituto de Biologia Celular e Molecular, Porto, Portugal; Department of Urology, Hospital de S João, Porto, Portugal.
    • Neuroscience. 2010 Mar 31; 166 (3): 907916907-16.

    AbstractBrain derived nerve factor (BDNF) is a trophic factor belonging to the neurotrophin family. It is upregulated in various inflammatory conditions, where it may contribute to altered pain states. In cystitis, little is known about the relevance of BDNF in bladder-generated noxious input and bladder overactivity, a matter we investigated in the present study. Female rats were intraperitoneally (i.p.) injected with cyclophosphamide (CYP; 200 mg/kg). They received saline or TrkB-Ig(2) via intravenously (i.v.) or intravesical administration. Three days after CYP-injection, animals were anaesthetized and cystometries performed. All animals were perfusion-fixed and the spinal cord segments L6 collected, post-fixed and processed for c-Fos and phosphoERK immunoreactivity. BDNF expression in the bladder, as well as bladder histology, was also assessed. Intravesical TrkB-Ig(2) did not change bladder reflex activity of CYP-injected rats. In CYP-animals treated with i.v. TrkB-Ig(2) a decrease in the frequency of bladder reflex contractions, in comparison with saline-treated animals, was observed. In spinal sections from the latter group of animals, the number of phosphoERK and c-Fos immunoreactive neurons was lower than in sections from saline-treated CYP-animals. BDNF immunoreactivity was higher during cystitis but was not changed by TrkB-Ig(2) i.v. treatment. Evaluation of the bladder histology showed similar inflammatory signs in the bladders of inflamed animals, irrespective of the treatment. Data show that i.v. but not intravesical administration of TrkB-Ig(2) reduced bladder hyperactivity in animals with cystitis to levels comparable to those observed in unirritated rats. Since i.v. TrkB-Ig(2) also reduced spinal extracellular signal-regulated kinase (ERK) activation, it is possible that BDNF contribution to inflammation-induced bladder hyperactivity is via spinal activation of the ERK pathway. Finally, the reduction in c-Fos expression indicates that TrkB-Ig(2) also reduced bladder-generated noxious input. Our results show that sequestration of BDNF may be considered a new therapeutic strategy to treat chronic cystitis.Copyright 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.