• J. Neurophysiol. · Nov 2005

    Clinical Trial

    Unraveling interlimb interactions underlying bimanual coordination.

    • Arne Ridderikhoff, C Lieke E Peper, and Peter J Beek.
    • Institute for Fundamental and Clinical Human Movement Sciences, Faculty of Human Movement Sciences, Vrije Universiteit, Van der Boechorststraat 9, 1081 BT Amsterdam, The Netherlands. a.ridderikhoff@fbw.vu.nl
    • J. Neurophysiol. 2005 Nov 1;94(5):3112-25.

    AbstractThree sources of interlimb interactions have been postulated to underlie the stability characteristics of bimanual coordination but have never been evaluated in conjunction: integrated timing of feedforward control signals, phase entrainment by contralateral afference, and timing corrections based on the perceived error of relative phase. In this study, the relative contributions of these interactions were discerned through systematic comparisons of five tasks involving rhythmic flexion-extension movements about the wrist, performed bimanually (in-phase and antiphase coordination) or unimanually with or without comparable passive movements of the contralateral hand. The main findings were the following. 1) Contralateral passive movements during unimanual active movements induced phase entrainment to interlimb phasing of either 0 degrees (in-phase) or 180 degrees (antiphase). 2) Entrainment strength increased with the passive movements' amplitude, but was similar for in-phase and antiphase movements. 3) Coordination of unimanual active movements with passive movements of the contralateral hand (kinesthetic tracking) was characterized by similar bilateral EMG activity as observed in active bimanual coordination. 4) During kinesthetic tracking the timing of the movements of the active hand was modulated by afference-based error corrections, which were more pronounced during in-phase coordination. 5) Indications of in-phase coordination being more stable than antiphase coordination were most prominent during active bimanual coordination and marginal during kinesthetic tracking. Together the results indicated that phase entrainment by contralateral afference contributed equally to the stability of in-phase and antiphase coordination, and that differential stability of these patterns depended predominantly on integrated timing of feedforward signals, with only a minor role for afference-based error corrections.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…