• Ann Fr Anesth Reanim · Jan 1993

    Review

    Mechanisms of activation of human mast cells and basophils by general anesthetic drugs.

    • G Marone, C Stellato, P Mastronardi, and B Mazzarella.
    • Department of Medicine, University of Naples Federico II, School of Medicine, Italy.
    • Ann Fr Anesth Reanim. 1993 Jan 1;12(2):116-25.

    AbstractA study was performed about the effects of increasing concentrations of muscle relaxants (suxamethonium, d-tubocurarine, vecuronium, and atracurium), hypnotics (propofol, ketamine, and thiopental), opioids (morphine, buprenorphine, and fentanyl), and benzodiazepines (diazepam, flunitrazepam, and midazolam) on the release of preformed (histamine and tryptase) and de novo synthesized (prostaglandin D2: PGD2 and peptide-leukotriene C4: LTC4) chemical mediators from human basophils and mast cells isolated from skin (HSMC), lung parenchyma (HLMC) and heart tissue (HHMC). None of the drugs tested induced the release of histamine or LTC4 from basophils of normal donors. Suxamethonium did not induce mediator release from any type of human mast cell tested. Only the highest concentration of d-tubocurarine used caused histamine release from HSMC and HLMC. Atracurium, more than vecuronium, induced concentration-dependent histamine release from HSMC and HLMC. Propofol induced a concentration-dependent histamine release from HLMC, but not from HHMC. Only the highest concentrations of ketamine and thiopental used caused a significant release of histamine from HLMC. The muscle relaxants and hypnotics examined did not induce any de novo synthesis of PGD2 or LTC4 in mast cells. Morphine only induced histamine and tryptase release from HSMC, but not the de novo synthesis of PGD2. In contrast, buprenorphine caused histamine and tryptase release from HLMC, and not from HSMC, whilst it also induced de novo synthesis of PGD2 and LTC4 in HLMC. Fentanyl did not give any histamine and tryptase release from mast cells. Diazepam and flunitrazepam only induced a small release of histamine from mast cells, whereas midazolam caused the release of histamine from HLMC. The biochemical pathways underlying the release of mediators from human mast cells induced by drugs used during general anaesthesia are different from those underlying the immune release of histamine. From the results obtained with the in vitro model described here, it is clear that new drugs promising for the anesthesiologic arena should be tested in vitro before their potential histamine-releasing activity is experienced in vivo.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.