-
- N Kannathal, Min Lim Choo, U Rajendra Acharya, and P K Sadasivan.
- Department of ECE, National University of Singapore, Singapore 119260, Singapore. kna2@np.edu.sg
- Comput Methods Programs Biomed. 2005 Dec 1;80(3):187-94.
AbstractThe electroencephalogram (EEG) is a representative signal containing information about the condition of the brain. The shape of the wave may contain useful information about the state of the brain. However, the human observer cannot directly monitor these subtle details. Besides, since bio-signals are highly subjective, the symptoms may appear at random in the time scale. Therefore, the EEG signal parameters, extracted and analyzed using computers, are highly useful in diagnostics. The aim of this work is to compare the different entropy estimators when applied to EEG data from normal and epileptic subjects. The results obtained indicate that entropy estimators can distinguish normal and epileptic EEG data with more than 95% confidence (using t-test). The classification ability of the entropy measures is tested using ANFIS classifier. The results are promising and a classification accuracy of about 90% is achieved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.