• Neuroscience · Feb 2016

    Neural activity in the suprachiasmatic circadian clock of nocturnal mice anticipating a daytime meal.

    • T Dattolo, C P Coomans, H C van Diepen, D F Patton, S Power, M C Antle, J H Meijer, and R E Mistlberger.
    • Department of Psychology, Simon Fraser University, BC, Canada.
    • Neuroscience. 2016 Feb 19; 315: 91-103.

    AbstractCircadian rhythms in mammals are regulated by a system of circadian oscillators that includes a light-entrainable pacemaker in the suprachiasmatic nucleus (SCN) and food-entrainable oscillators (FEOs) elsewhere in the brain and body. In nocturnal rodents, the SCN promotes sleep in the day and wake at night, while FEOs promote an active state in anticipation of a predictable daily meal. For nocturnal animals to anticipate a daytime meal, wake-promoting signals from FEOs must compete with sleep-promoting signals from the SCN pacemaker. One hypothesis is that FEOs impose a daily rhythm of inhibition on SCN output that is timed to permit the expression of activity prior to a daytime meal. This hypothesis predicts that SCN activity should decrease prior to the onset of anticipatory activity and remain suppressed through the scheduled mealtime. To assess the hypothesis, neural activity in the SCN of mice anticipating a 4-5-h daily meal in the light period was measured using FOS immunohistochemistry and in vivo multiple unit electrophysiology. SCN FOS, quantified by optical density, was significantly reduced at the expected mealtime in food-anticipating mice with access to a running disk, compared to ad libitum-fed and acutely fasted controls. Group differences were not significant when FOS was quantified by other methods, or in mice without running disks. SCN electrical activity was markedly decreased during locomotion in some mice but increased in others. Changes in either direction were concurrent with locomotion, were not specific to food anticipation, and were not sustained during longer pauses. Reduced FOS indicates a net suppression of SCN activity that may depend on the intensity or duration of locomotion. The timing of changes in SCN activity relative to locomotion suggests that any effect of FEOs on SCN output is mediated indirectly, by feedback from neural or systemic correlates of locomotion. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.