• Neuroscience · Feb 2016

    Distribution of respiration-related neuronal activity in the thoracic spinal cord of the neonatal rat: an optical imaging study.

    • M Iizuka, H Onimaru, and M Izumizaki.
    • Center for Medical Sciences, Ibaraki Prefectural University of Health Sciences, 4669-2 Ami, Ibaraki 300-0394, Japan; Department of Physiology, Showa University School of Medicine, 1-5-8 Hatanodai, Shinagawa-ku, Tokyo 142-8555, Japan. Electronic address: iizukam@med.showa-u.ac.jp.
    • Neuroscience. 2016 Feb 19; 315: 217-27.

    AbstractThe inspiratory motor outputs are larger in the intercostal muscles positioned at more rostral segments. To obtain further insights into the involvement of the spinal interneurons in the generation of this rostrocaudal gradient, the respiratory-related neuronal activities were optically recorded from various thoracic segments in brainstem-spinal cord preparations from 0- to 2-day-old rats. The preparation was stained with a voltage-sensitive dye, and the optical signals from about 2.5s before to about 7.7s after the peak of the C4 inspiratory discharge were obtained. Respiratory-related depolarizing signals were detectable from the ventral surface of all thoracic segments. Since the local blockage of the synaptic transmission in the thoracic spinal cord induced by the low-Ca(2+) superfusate blocked all respiratory signals, it is likely that these signals came from spinal neurons. Under the-low Ca(2+) superfusate, ventral root stimulation, inducing antidromic activation of motoneurons, evoked depolarizing optical signals in a restricted middle area between the lateral edge and midline of the spinal cord. These areas were referred to as 'motoneuron areas'. The respiratory signals were observed not only in the motoneuron areas but also in areas medial to the motoneuron areas, where interneurons should exist; these were referred to as 'interneuron areas'. The upper thoracic segments showed significantly larger inspiratory-related signals than the lower thoracic segments in both the motoneuron and interneuron areas. These results suggest that the inspiratory interneurons in the thoracic spinal cord play a role in the generation of the rostrocaudal gradient in the inspiratory intercostal muscle activity. Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.