-
- Ping Zhou, Madeleine M Lowery, Kevin B Englehart, He Huang, Guanglin Li, Levi Hargrove, Julius P A Dewald, and Todd A Kuiken.
- Neural Engineering Center for Artificial Limbs, Rehabilitation Institute of Chicago, IL, USA.
- J. Neurophysiol. 2007 Nov 1;98(5):2974-82.
AbstractAn analysis of the motor control information content made available with a neural-machine interface (NMI) in four subjects is presented in this study. We have developed a novel NMI-called targeted muscle reinnervation (TMR)-to improve the function of artificial arms for amputees. TMR involves transferring the residual amputated nerves to nonfunctional muscles in amputees. The reinnervated muscles act as biological amplifiers of motor commands in the amputated nerves and the surface electromyogram (EMG) can be used to enhance control of a robotic arm. Although initial clinical success with TMR has been promising, the number of degrees of freedom of the robotic arm that can be controlled has been limited by the number of reinnervated muscle sites. In this study we assess how much control information can be extracted from reinnervated muscles using high-density surface EMG electrode arrays to record surface EMG signals over the reinnervated muscles. We then applied pattern classification techniques to the surface EMG signals. High accuracy was achieved in the classification of 16 intended arm, hand, and finger/thumb movements. Preliminary analyses of the required number of EMG channels and computational demands demonstrate clinical feasibility of these methods. This study indicates that TMR combined with pattern-recognition techniques has the potential to further improve the function of prosthetic limbs. In addition, the results demonstrate that the central motor control system is capable of eliciting complex efferent commands for a missing limb, in the absence of peripheral feedback and without retraining of the pathways involved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.