• Neuroscience · Mar 2016

    Post-translational modification of cortical GluA receptors in rodents following spinal cord lesion.

    • L Jiang, P Voulalas, Y Ji, and R Masri.
    • Department of Endodontics, Periodontics, and Prosthodontics, University of Maryland School of Dentistry, Baltimore, MD 21201, United States.
    • Neuroscience. 2016 Mar 1; 316: 122129122-9.

    AbstractPrevious studies investigating the pathophysiology of neuropathic pain caused by injury to the spinal cord suggest that pain may result, at least in part, from maladaptive plasticity in the somatosensory cortex and associated pain networks. However, little is known about the molecular and cellular mechanisms leading to maladaptive plasticity in the cortex and how they contribute to the development of neuropathic pain. AMPA-type glutamate receptors (GluARs) mediate fast excitatory synaptic transmission in the mammalian brain and play an important role in pain processing. Here we used an electrolytic lesion model of spinal cord injury in animals to study the expression and phosphorylation of GluA1 and 2 in the primary somatosensory cortex (S1). Experiments in rats and mice revealed that maladaptive plasticity and hypersensitivity after spinal cord lesion (SCL) are associated with a reduction in the fraction of GluA1 subunits that are phosphorylated at serine 831 (S831) in the hindlimb representation of S1 (S1HL). Manipulations that reduce the fraction of phosphorylated S831 in S1HL of non-lesioned animals, including low-frequency electrical stimulation and viral-mediated gene transfer of mutant S831, were associated with the development of hypersensitivity. Taken together, these findings suggest that phosphorylation of GluA1 at S831 plays an important role in the development of hypersensitivity after SCL.Copyright © 2015 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.