• Neuroscience · Mar 2010

    Histamine potentiates acid-induced responses mediating transient receptor potential V1 in mouse primary sensory neurons.

    • Y Kajihara, M Murakami, T Imagawa, K Otsuguro, S Ito, and T Ohta.
    • Laboratory of Pharmacology, Department of Biomedical Sciences, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo 060-0818, Japan.
    • Neuroscience. 2010 Mar 10;166(1):292-304.

    AbstractIn inflamed tissues, extracellular pH decreases and acidosis is an important source of pain. Histamine is released from mast cells under inflammatory conditions and evokes the pain sensation in vivo, but the cellular mechanism of histamine-induced pain has not been well understood. In the present study, we examined the effects of histamine on [Ca(2+)](i) and membrane potential responses to acid in isolated mouse dorsal root ganglion (DRG) neurons. In capsaicin-sensitive DRG neurons from wild-type mice, acid (>pH 5.0) evoked [Ca(2+)](i) increases, but not in DRG neurons from transient receptor potential V1 (TRPV1) (-/-) mice. Regardless of isolectin GS-IB4 (IB4)-staining, histamine potentiated [Ca(2+)](i) responses to acid (>or=pH 6.0) that were mediated by TRPV1 activation. Histamine increased membrane depolarization induced by acid and evoked spike discharges. RT-PCR indicated the expression of all four histamine receptors (H1R, H2R, H3R, H4R) in mouse DRG. The potentiating effect of histamine was mimicked by an H1R agonist, but not H2R-H4R agonists and was inhibited only by an H1R antagonist. Histamine failed to potentiate the [Ca(2+)](i) response to acid in the presence of inhibitors for phospholipase C (PLC) and protein kinase C (PKC). A lipoxygenase inhibitor and protein kinase A inhibitor did not affect the potentiating effects of histamine. Carrageenan and complete Freund's adjuvant produced inflammatory hyperalgesia, but these inflammatory conditions did not change the potentiating effects of histamine in DRG neurons. The present results suggest that histamine sensitizes acid-induced responses through TRPV1 activation via H1R coupled with PLC/PKC pathways, the action of which may be involved in the generation of inflammatory pain.Copyright 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.