• AJR Am J Roentgenol · Mar 2006

    Relationship between fluoroscopic time, dose-area product, body weight, and maximum radiation skin dose in cardiac interventional procedures.

    • Koichi Chida, Haruo Saito, Hiroki Otani, Masahiro Kohzuki, Shoki Takahashi, Shogo Yamada, Kunio Shirato, and Masayuki Zuguchi.
    • Department of Radiological Technology, Tohoku University School of Health Sciences, 2-1 Seiryo-machi, Aoba-ku, Sendai 980-8575, Japan. chida@rad.cms.tohoku.ac.jp
    • AJR Am J Roentgenol. 2006 Mar 1;186(3):774-8.

    ObjectiveReal-time maximum dose monitoring of the skin is unavailable on many of the X-ray machines that are used for cardiac intervention procedures. Therefore, some reports have recommended that physicians record the fluoroscopic time for patients undergoing fluoroscopically guided intervention procedures. However, the relationship between the fluoroscopic time and the maximum radiation skin dose is not clear. This article describes the correlation between the maximum radiation skin dose and fluoroscopic time for patients undergoing cardiac intervention procedures. In addition, we examined whether the correlations between maximum radiation skin dose and body weight, fluoroscopic time, and dose-area product (DAP) were useful for estimating the maximum skin dose during cardiac intervention procedures.Materials And MethodsTwo hundred consecutive cardiac intervention procedures were studied: 172 percutaneous coronary interventions and 28 cardiac radiofrequency catheter ablation (RFCA) procedures. The patient skin dose and DAP were measured using Caregraph with skin-dose-mapping software.ResultsFor the RFCA procedures, we found a good correlation between the maximum radiation skin dose and fluoroscopic time (r = 0.801, p < 0.0001), whereas we found a poor correlation between the maximum radiation skin dose and fluoroscopic time for the percutaneous coronary intervention procedures (r = 0.628, p < 0.0001). There was a strong correlation between the maximum radiation skin dose and DAP in RFCA procedures (r = 0.942, p < 0.0001). There was also a significant correlation between the maximum radiation skin dose and DAP (r = 0.724, p < 0.0001) and weight-fluoroscopic time product (WFP) (r = 0.709, p < 0.0001) in percutaneous coronary intervention procedures.ConclusionThe correlation between the maximum radiation skin dose with DAP is more striking than that with fluoroscopic time in both RFCA and percutaneous coronary intervention procedures. We recommend that physicians record the DAP when it can be monitored and that physicians record the fluoroscopic time when DAP cannot be monitored for estimating the maximum patient skin dose in RFCA procedures. For estimating the maximum patient skin dose in percutaneous coronary intervention procedures, we also recommend that physicians record DAP when it can be monitored and that physicians record WFP when DAP cannot be monitored.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…