• Clin Neurophysiol · Jul 2007

    Depression of the human nociceptive withdrawal reflex by segmental and heterosegmental intramuscular electrical stimulation.

    • Hong-You Ge, Thomas Collet, Carsten Dahl Mørch, Lars Arendt-Nielsen, and Ole Kaeseler Andersen.
    • Laboratory for Experimental Pain Research, Center for Sensory-Motor Interaction, Department of Health Science and Technology, Aalborg University, Fredrik Bajers Vej 7 D-3, Aalborg, Denmark.
    • Clin Neurophysiol. 2007 Jul 1;118(7):1626-32.

    ObjectiveTo investigate the effects of intramuscular electrical conditioning in the modulation of nociceptive withdrawal reflex (NWR) and further to determine what muscle afferents are involved in the modulation of the nociceptive withdrawal reflex and the sites along the reflex pathway where the NWR modulation occurs in healthy humans.MethodsThe NWR elicited by a cutaneous test stimulus to the dorsal foot was modulated by a short (21 ms) intramuscular conditioning electrical stimulus at two times the pain threshold. At varying conditioning-test stimulus intervals, segmental conditioning stimulus was applied in the tibialis anterior muscle ipsilateral and contralateral to the test stimulus, and heterosegmental conditioning stimulus was applied in the contralateral trapezius muscle to modulate the NWR. Non-painful and painful intramuscular conditioning stimuli were also used to modulate the NWR and the soleus H-reflex.ResultsThe NWR was depressed by preceding intramuscular conditioning stimuli, with a degree that depended on the conditioning-test stimulus intervals and on the conditioning site. Segmental conditioning depressed the NWR more quickly and gave a longer duration (15-1500 ms), and larger magnitude than heterosegmental conditioning, which depressed the NWR in a short temporal window (80-100 ms). No difference was seen in the magnitude of the NWR depression between the painful and non-painful intramuscular stimuli, and the soleus H-reflex was not affected.ConclusionsOur results suggest that segmental and heterosegmental conditionings of NWR are mediated by myelinated muscle afferents engaging central inhibitory mechanisms rather than direct changes in the excitability of motor neurons.SignificanceThe therapeutic effects of electrotherapy could involve these mechanisms in the treatment of muscle pain syndromes.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.