Clinical neurophysiology : official journal of the International Federation of Clinical Neurophysiology
-
Clinical Trial
How response inhibition modulates nociceptive and non-nociceptive somatosensory brain-evoked potentials.
To examine and compare the modulation of nociceptive somatosensory laser-evoked potentials (LEPs) and non-nociceptive somatosensory electrically-evoked potentials (SEPs) by brain processes related to response inhibition. ⋯ Response inhibition significantly modulates both LEPs and SEPs. Part of these activities may be specific of the eliciting stimulus modality.
-
To investigate the effects of intramuscular electrical conditioning in the modulation of nociceptive withdrawal reflex (NWR) and further to determine what muscle afferents are involved in the modulation of the nociceptive withdrawal reflex and the sites along the reflex pathway where the NWR modulation occurs in healthy humans. ⋯ The therapeutic effects of electrotherapy could involve these mechanisms in the treatment of muscle pain syndromes.
-
To evaluate the efficacy of constant current transcranial electric stimulation (TES) parameters for eliciting muscle motor evoked potentials (MEPs) in the abductor pollicis brevis muscles (APB) and the tibialis anterior muscles (TA). The following parameters were tested intraoperatively: interstimulus interval (ISI), individual stimulation pulse duration within a train of five stimuli. Different montages of stimulating electrodes were assessed for effectiveness and focality. Further, reference values for APB and TA motor thresholds in neurosurgical patients with normal motor status under total intravenous anesthesia were determined. ⋯ The stimulation parameters within a train of five pulses with an individual pulse duration of 0.5 ms and an ISI of 4 ms provide the lowest motor threshold. These data confirm not only studies for D wave recovery but also provide optimal stimulation parameters for intraoperative near threshold stimulation.