• Seminars in nephrology · May 2013

    Renal potassium homeostasis: a short historical perspective.

    • Gerhard H Giebisch and Charles S Wingo.
    • Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT 06520, USA. Gerhard.giebisch@yale.edu
    • Semin. Nephrol. 2013 May 1; 33 (3): 209-14.

    AbstractDuring the past century, investigators have increased our understanding of renal potassium excretion significantly using many techniques. Notable among these were renal clearance experiments, renal micropuncture, isolated tubule microperfusion, and electrophysiological and patch clamp analysis. These experiments have been made possible by technical advances that have allowed the measurement of potassium in progressively smaller quantities. Initially, the kidney was viewed as controlling potassium excretion by the regulated absorption of potassium from the glomerular filtrate, predominantly in the proximal tubule. This concept was supplanted when clearance experiments deduced and subsequent micropuncture studies directly identified the importance of the distal nephron and collecting duct as the principal site responsible for the regulation of potassium excretion. Additional micropuncture and microperfusion studies showed that a component of potassium secreted by the distal cortical nephron and cortical collecting duct is reabsorbed in the medullary collecting duct, which results in renal medullary potassium recycling. Studies have defined the cellular and molecular mechanisms responsible for potassium secretion and potassium reabsorption in the collecting duct. Further understanding of renal potassium handling will require integrated investigation of the renal and extrarenal signaling systems that control these transport mechanisms. Copyright © 2013 Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…