Seminars in nephrology
-
During the past century, investigators have increased our understanding of renal potassium excretion significantly using many techniques. Notable among these were renal clearance experiments, renal micropuncture, isolated tubule microperfusion, and electrophysiological and patch clamp analysis. These experiments have been made possible by technical advances that have allowed the measurement of potassium in progressively smaller quantities. ⋯ Additional micropuncture and microperfusion studies showed that a component of potassium secreted by the distal cortical nephron and cortical collecting duct is reabsorbed in the medullary collecting duct, which results in renal medullary potassium recycling. Studies have defined the cellular and molecular mechanisms responsible for potassium secretion and potassium reabsorption in the collecting duct. Further understanding of renal potassium handling will require integrated investigation of the renal and extrarenal signaling systems that control these transport mechanisms.
-
It has been known for decades that urinary potassium excretion varies with a circadian pattern. In this review, we consider the historical evidence for this phenomenon and present an overview of recent developments in the field. ⋯ We propose the circadian clock mechanism as a key regulator of renal potassium transporters, and consequently renal potassium excretion. Further investigation into the regulation mechanism of renal potassium transport by the circadian clock is warranted to increase our understanding of the clinical relevance of circadian rhythms to potassium homeostasis.