• Neuroscience letters · Jan 2015

    Hyperalgesia in an immobilized rat hindlimb: effect of treadmill exercise using non-immobilized limbs.

    • Sayaka Chuganji, Jiro Nakano, Yuki Sekino, Yohei Hamaue, Junya Sakamoto, and Minoru Okita.
    • Department of Physical Therapy Science, Unit of Physical and Occupational Therapy Sciences, Nagasaki University Graduate School of Biomedical Sciences, 1-7-1 Sakamoto, Nagasaki-shi, Nagasaki 852-8520, Japan.
    • Neurosci. Lett. 2015 Jan 1;584:66-70.

    AbstractCast immobilization of limbs causes hyperalgesia, which is a decline of the threshold of mechanical and thermal mechanical stimuli. The immobilization-induced hyperalgesia (IIH) can disturb rehabilitation and activities of daily living in patients with orthopedic disorders. However, it is unclear what therapeutic and preventive approaches can be used to alleviate IIH. Exercise that activates the descending pain modulatory system may be effective for IIH. The purpose of this study was to investigate the effects of treadmill exercise during the immobilization period, using the non-immobilized limbs, on IIH. Thirty-six 8-week-old Wistar rats were randomly divided into (1) control, (2) immobilization (Im), and (3) immobilization and treadmill exercise (Im+Ex) groups. In the Im and Im+Ex groups, the right ankle joints of each rat were immobilized in full plantar flexion with a plaster cast for an 8-week period. In the Im+Ex group, treadmill exercise (15 m/min, 30 min/day, 5 days/week) was administered during the immobilization period while the right hindlimb was kept immobilized. Mechanical hyperalgesia was measured using von Frey filaments every week. To investigate possible activation of the descending pain modulatory system, beta-endorphin expression levels in hypothalamus and midbrain periaqueductal gray were analyzed. Although IIH clearly occurred in the Im group, the hyperalgesia was partially but significantly reduced in the Im+Ex group. Beta-endorphin, which is one of the endogenous opioids, was selectively increased in the hypothalamus and midbrain periaqueductal gray of the Im+Ex group. Our data suggest that treadmill running using the non-immobilized limbs reduces the amount of hyperalgesia induced in the immobilized limb even if it is not freed. This ameliorating effect might be due to the descending pain modulatory system being activated by upregulation of beta-endorphin in the brain.Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.