• Neuroscience · Jan 2011

    Prolactin-releasing peptide enhances synaptic transmission in rat thalamus.

    • Y-F Xia and A C Arai.
    • Southern Illinois University School of Medicine, Springfield, IL, USA.
    • Neuroscience. 2011 Jan 13;172:1-11.

    AbstractProlactin-releasing peptide (PrRP) is an RF-amide peptide that is believed to be the physiological ligand for the G-protein coupled receptor GPR10. This receptor is highly expressed in the GABAergic principal neurons of the reticular thalamic nucleus (RTN), but the cellular and physiological effects of receptor activation on thalamic function are not yet clear. The present study examined the effects of PrRP on excitatory and inhibitory synaptic transmission in the RTN and the ventrobasal complex (VB) of the thalamus. In RTN neurons, PrRP enhanced excitatory synaptic transmission by selectively increasing the amplitude of the NMDA receptor-mediated excitatory postsynaptic current (EPSC; NMDA-EPSC). AMPA receptor mediated current were not affected. A mutated form of PrRP with negligible affinity to GPR10 was ineffective, and no enhancement of NMDA-EPSCs was observed in the ventrobasal thalamus, which does not express GPR10. The effect was distinct from that of neuropeptide FF (NPFF), which enhanced both AMPA and NMDA receptor mediated responses and probably acted though a presynaptic NPFF receptor. Taken together, these results suggest that PrRP selectively modulates NMDA receptor-mediated synaptic transmission in RTN neurons through postsynaptic GPR10 receptors. This effect appears to involve an unconventional mechanism because it was not blocked by intracellularly applied GDPβS. PrRP also increased by 50-75% the amplitude of GABAA receptor-mediated inhibitory postsynaptic current (IPSCs) in both ventrobasal nucleus and RTN neurons. The former represents inhibitory input from RTN neurons to thalamocortical relay cells and the latter a local inhibition produced by RTN axon collaterals. Miniature IPSC analysis revealed that PrRP enhanced release of GABA and thus acted presynaptically. In conclusion, PrRP increases both excitatory and inhibitory synaptic transmission in the thalamus via distinct mechanisms, and the receptors responsible for these actions are in all cases present in the principal neuron of the RTN.Copyright © 2011 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.