-
- M O Urban, P K Zahn, and G F Gebhart.
- Department of Pharmacology, College of Medicine, The University of Iowa, Iowa City 52242, USA.
- Neuroscience. 1999 May 1;90(2):349-52.
AbstractProlonged nociceptive input following peripheral injury results in hyperalgesia (enhanced response to a noxious stimulus), which is thought to occur as a consequence of sensitization of primary afferent nociceptors and enhanced excitability of spinal dorsal horn nociceptive neurons (central sensitization). Since there is often an expansion of hyperalgesia to tissue adjacent, and even distant from the site of injury (secondary hyperalgesia), it is thought that this phenomenon primarily involves mechanisms of central modulation/plasticity. In contrast, hyperalgesia observed at the site of tissue injury (primary hyperalgesia) involves peripheral mechanisms. In the current study, we examined the relative contribution of descending nociceptive facilitatory systems from the rostral medial medulla to enhanced behavioral nociceptive responses in models of primary and secondary hyperalgesia in awake rats. The effect of bilateral rostral medial medulla lesions produced by the soma-selective neurotoxin ibotenic acid was determined in three different models of cutaneous thermal hyperalgesia following peripheral inflammation: (i) intraplantar injection of carrageenan into the hindpaw (model of primary hyperalgesia); (ii) intra-articular injection of carrageenan/kaolin into the knee of the hind leg (model of secondary hyperalgesia); and (iii) topical application of mustard oil to the hind leg (model of secondary hyperalgesia). Compared with sham lesion animals, a bilateral lesion of the rostral medial medulla completely blocked thermal hyperalgesia in the two models of secondary hyperalgesia (intra-articular carrageenan/kaolin injection into the knee and topical mustard oil application to the hind leg), but was ineffective in blocking facilitation of the thermal paw withdrawal response in the model of primary hyperalgesia (intraplantar carrageenan injection into the hindpaw). These results suggest that primary and secondary hyperalgesia are differentially modulated in the CNS, and support the notion that descending nociceptive facilitatory influences from the rostral medial medulla significantly contribute to secondary, but not primary, hyperalgesia.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.