-
Comparative Study
Seeking a mechanism of action for the novel anticonvulsant lacosamide.
- Adam C Errington, Leanne Coyne, Thomas Stöhr, Norma Selve, and George Lees.
- Department of Pharmacology and Toxicology, Otago School of Medical Sciences, University of Otago, PO Box 913, Dunedin, New Zealand.
- Neuropharmacology. 2006 Jun 1;50(8):1016-29.
AbstractLacosamide (LCM) is anticonvulsant in animal models and is in phase 3 assessment for epilepsy and neuropathic pain. Here we seek to identify cellular actions for the new drug and effects on recognised target sites for anticonvulsant drugs. Radioligand binding and electrophysiology were used to study the effects of LCM at well-established mammalian targets for clinical anticonvulsants. 10 microM LCM did not bind with high affinity to a plethora of rodent, guinea pig or human receptor sites including: AMPA; Kainate; NMDA (glycine/PCP/MK801); GABA(A) (muscimol/benzodiazepine); GABA(B); adenosine A1,2,3; alpha1, alpha2; beta1, beta2; M1,2,3,4,5; H1,2,3; CB1,2; D1,2,3,4,5; 5HT1A,1B,2A,2C,3,5A,6,7 and KATP. Weak displacement (25%) was evident at batrachotoxin site 2 on voltage gated Na+ channels. LCM did not inhibit neurotransmitter transport mechanisms for norepinephrine, dopamine, 5-HT or GABA, nor did it inhibit GABA transaminase. LCM at 100 microM produced a significant reduction in the incidence of excitatory postsynaptic currents (EPSC's) and inhibitory postsynaptic currents (IPSC's) in cultured cortical cells and blocked spontaneous action potentials (EC50 61 microM). LCM did not alter resting membrane potential or passive membrane properties following application of voltage ramps between -70 to +20 mV. The voltage-gated sodium channel (VGSC) blocker phenytoin potently blocked sustained repetitive firing (SRF) but, in contrast, 100 microM LCM failed to block SRF. No effect was observed on voltage-clamped Ca2+ channels (T-, L-, N- or P-type). Delayed-rectifier or A-type potassium currents were not modulated by LCM (100 microM). LCM did not mimic the effects of diazepam as an allosteric modulator of GABA(A) receptor currents, nor did it significantly modulate evoked excitatory neurotransmission mediated by NMDA or AMPA receptors (n > or = 5). Evidently LCM perturbs excitability in primary cortical cultures but does not appear to do so via a high-affinity interaction with an acknowledged recognition site on a target for existing antiepileptic drugs.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.