Neuropharmacology
-
Comparative Study
Effects of some neurosteroids injected into some brain areas of WAG/Rij rats, an animal model of generalized absence epilepsy.
Neurosteroids are synthesized in the brain and have been demonstrated to modulate various cerebral functions. Allopregnanolone (3alpha-hydroxy-5alpha-pregnan-20-one), a naturally occurring neurosteroid, and ganaxolone (3alpha-hydroxy-3beta-methyl-5alpha-pregnan-20-one), a synthetic derivative, are two neurosteroids acting as positive allosteric modulators of the GABA(A) receptor complex acting on a specific steroid recognition site. Both agents antagonize generalized tonic-clonic seizures in various animal models of epilepsy. ⋯ Whereas both compounds were able to reduce the number and duration of SWDs when microinjected into the peri-oral region of the primary somatosensory cortex. The effects of PS were more complex depending on both the dose and the site of administration, generally, at low doses in thalamic nuclei and cortex, PS induced an increase of absence activity and a reduction at higher doses. These findings suggest that neurosteroids might play a role in absence epilepsies and that it might depend on the involvement of specific neuronal areas.
-
Comparative Study
Seeking a mechanism of action for the novel anticonvulsant lacosamide.
Lacosamide (LCM) is anticonvulsant in animal models and is in phase 3 assessment for epilepsy and neuropathic pain. Here we seek to identify cellular actions for the new drug and effects on recognised target sites for anticonvulsant drugs. Radioligand binding and electrophysiology were used to study the effects of LCM at well-established mammalian targets for clinical anticonvulsants. 10 microM LCM did not bind with high affinity to a plethora of rodent, guinea pig or human receptor sites including: AMPA; Kainate; NMDA (glycine/PCP/MK801); GABA(A) (muscimol/benzodiazepine); GABA(B); adenosine A1,2,3; alpha1, alpha2; beta1, beta2; M1,2,3,4,5; H1,2,3; CB1,2; D1,2,3,4,5; 5HT1A,1B,2A,2C,3,5A,6,7 and KATP. ⋯ Delayed-rectifier or A-type potassium currents were not modulated by LCM (100 microM). LCM did not mimic the effects of diazepam as an allosteric modulator of GABA(A) receptor currents, nor did it significantly modulate evoked excitatory neurotransmission mediated by NMDA or AMPA receptors (n > or = 5). Evidently LCM perturbs excitability in primary cortical cultures but does not appear to do so via a high-affinity interaction with an acknowledged recognition site on a target for existing antiepileptic drugs.