• J Trauma · Sep 2000

    Harborview assessment for risk of mortality: an improved measure of injury severity on the basis of ICD-9-CM.

    • T A West, F P Rivara, P Cummings, G J Jurkovich, and R V Maier.
    • Department of Surgery, University of Texas Southwestern Medical Center, Dallas 75235-9158, USA.
    • J Trauma. 2000 Sep 1;49(3):530-40; discussion 540-1.

    BackgroundThere have been several attempts to develop a scoring system that can accurately reflect the severity of a trauma patient's injuries, particularly with respect to the effect of the injury on survival. Current methodologies require unreliable physiologic data for the assignment of a survival probability and fail to account for the potential synergism of different injury combinations. The purpose of this study was to develop a scoring system to better estimate probability of mortality on the basis of information that is readily available from the hospital discharge sheet and does not rely on physiologic data.MethodsRecords from the trauma registry from an urban Level I trauma center were analyzed using logistic regression. Included in the regression were Internation Classification of Diseases-9th Rev (ICD-9CM) codes for anatomic injury, mechanism, intent, and preexisting medical conditions, as well as age. Two-way interaction terms for several combinations of injuries were also included in the regression model. The resulting Harborview Assessment for Risk of Mortality (HARM) score was then applied to an independent test data set and compared with Trauma and Injury Severity Score (TRISS) probability of survival and ICD-9-CM Injury Severity Score (ICISS) for ability to predict mortality using the area under the receiver operator characteristic curve.ResultsThe HARM score was based on analysis of 16,042 records (design set). When applied to an independent validation set of 15,957 records, the area under the receiver operator characteristic curve (AUC) for HARM was 0.9592. This represented significantly better discrimination than both TRISS probability of survival (AUC = 0.9473, p = 0.005) and ICISS (AUC = 0.9402, p = 0.001). HARM also had a better calibration (Hosmer-Lemeshow statistic [HL] = 19.74) than TRISS (HL = 55.71) and ICISS (HL = 709.19). Physiologic data were incomplete for 6,124 records (38%) of the validation set; TRISS could not be calculated at all for these records.ConclusionThe HARM score is an effective tool for predicting probability of in-hospital mortality for trauma patients. It outperforms both the TRISS and ICD9-CM Injury Severity Score (ICISS) methodologies with respect to both discrimination and calibration, using information that is readily available from hospital discharge coding, and without requiring emergency department physiologic data.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…