• NMR in biomedicine · Feb 2010

    Reproducibility of tract-specific magnetization transfer and diffusion tensor imaging in the cervical spinal cord at 3 tesla.

    • Seth A Smith, Craig K Jones, Aliya Gifford, Visar Belegu, BettyAnn Chodkowski, Jonathan A D Farrell, Bennett A Landman, Daniel S Reich, Peter A Calabresi, John W McDonald, and Peter C M van Zijl.
    • F.M. Kirby Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA. seth.smith@vanderbilt.edu
    • NMR Biomed. 2010 Feb 1;23(2):207-17.

    AbstractDamage to specific white matter tracts within the spinal cord can often result in the particular neurological syndromes that characterize myelopathies such as traumatic spinal cord injury. Noninvasive visualization of these tracts with imaging techniques that are sensitive to microstructural integrity is an important clinical goal. Diffusion tensor imaging (DTI)- and magnetization transfer (MT)-derived quantities have shown promise in assessing tissue health in the central nervous system. In this paper, we demonstrate that DTI of the cervical spinal cord can reliably discriminate sensory (dorsal) and motor (lateral) columns. From data derived from nine healthy volunteers, two raters quantified column-specific parallel (lambda(||)) and perpendicular (lambda(perpendicular)) diffusivity, fractional anisotropy (FA), mean diffusivity (MD), and MT-weighted signal intensity relative to cerebrospinal fluid (MTCSF) over two time-points separated by more than 1 week. Cross-sectional means and standard deviations of these measures in the lateral and dorsal columns were as follows: lambda(||): 2.13 +/- 0.14 and 2.14 +/- 0.11 microm(2)/ms; lambda(perpendicular): 0.67 +/- 0.16 and 0.61 +/- 0.09 microm(2)/ms; MD: 1.15 +/- 0.15 and 1.12 +/- 0.08 microm(2)/ms; FA: 0.68 +/- 0.06 and 0.68 +/- 0.05; MTCSF: 0.52 +/- 0.05 and 0.50 +/- 0.05. We examined the variability and interrater and test-retest reliability for each metric. These column-specific MR measurements are expected to enhance understanding of the intimate structure-function relationship in the cervical spinal cord and may be useful for the assessment of disease progression.(c) 2009 John Wiley & Sons, Ltd.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…