• Ann Fr Anesth Reanim · Jan 1995

    Review

    [High frequency jet ventilation combined with conventional mechanical ventilation in the treatment of adult respiratory distress syndrome].

    • J P Roustan.
    • Département d'Anesthésie-Réanimation A, Hôpital Lapeyronie, Montpellier.
    • Ann Fr Anesth Reanim. 1995 Jan 1;14(3):276-88.

    AbstractBetter understanding of the physiopathology of ventilatory mechanisms associated with ARDS and the recent re-evaluation of the iatrogenic potential of mechanical ventilation (MV) brings us closer to the best suited ventilatory mode for these patients. In severely ill ARDS patients, only a small lung volume is ventilated, and remains available for the totality of the gas exchanges (baby lung concept). The goal of MV is to restore and maintain an optimal exchange volume while limiting mechanical agression of the lung tissue. Analysis of the ARDS related pressure-volume relationship (P/V) is helpful in specifying the tolerable limits of the ventilatory pressure regimen. The lower limit (end expiratory pressure) must be kept above the lower inflexion point of the curve, in order to increase the ventilated lung volume and avoid distal airway collapse. Under this limit, gas exchanges are altered by the shunt effect, and shear stress lesions result from the repeated opening and closing of the distal airways. The upper limit (end inspiratory pressure) must be situated below the upper inflexion point of the curve, in order to avoid lesions resulting from surdistension of the alveolocapillary membranes and barotraumatisms. The only way to position MV in such a narrow pressure window, is to greatly reduce the tidal volume (VT). Though CO2 retention would inevitably occur under conventional MV conditions, high frequency ventilation (HFV) seems better adapted to these theoreotical objectives; small VT's are injected under a limited amplitude pressure regimen and a satisfactory CO2 clearance is maintained. This ventilatory mode, existing since more than 15 years, has recently benefited from many technical improvements as well as the concept of oscillating the ventilation around a selected mean pressure in the central region of the P/V curve. In the past, HFV was applied using low pressure regimens, situated below the lower inflexion point of the curve. The resulting failures are, a posteriori, explained by insufficient lung volumes, unable to maintain adequate gas exchanges. Current work is aimed at re-evaluating HFV, using higher mean airway pressure levels. Combined HFV is another advance towards the theoretical goal of restoring and maintaining optimally ventilated lung volumes. Though HFV alone can maintain lung volumes oscillating around a mean value, it cannot re-expand atelectatic areas. The small VT's used are insufficient to overcome these area's elevated opening pressures. Volume recruitment by periodic hyperinflations, or sighs, though generally considered useless in conventional MV, have been shown to be of great benefit in HFV.(ABSTRACT TRUNCATED AT 400 WORDS)

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…