• IEEE Trans Med Imaging · Sep 2008

    Fast joint reconstruction of dynamic R2* and field maps in functional MRI.

    • Valur T Olafsson, Douglas C Noll, and Jeffrey A Fessler.
    • Department of Electrical Engineering and ComputerScience, The University of Michigan, 2360 Bonisteel Blvd., Ann Arbor, MI48109 USA. volafsso@umich.edu
    • IEEE Trans Med Imaging. 2008 Sep 1;27(9):1177-88.

    AbstractBlood oxygen level dependent (BOLD) functional magnetic resonance imaging (fMRI) is conventionally done by reconstructing T(2)(*)-weighted images. However, since the images are unitless they are nonquantifiable in terms of important physiological parameters. An alternative approach is to reconstruct R(2)(*) maps which are quantifiable and have comparable BOLD contrast as T(2)(*)-weighted images. However, conventional R(2)(*) mapping involves long readouts and ignores relaxation during readout. Another problem with fMRI imaging is temporal drift/fluctuations in off-resonance. Conventionally, a field map is collected at the start of the fMRI study to correct for off-resonance, ignoring any temporal changes. Here, we propose a new fast regularized iterative algorithm that jointly reconstructs R(2)(*) and field maps for all time frames in fMRI data. To accelerate the algorithm we linearize the MR signal model, enabling the use of fast regularized iterative reconstruction methods. The regularizer was designed to account for the different resolution properties of both R(2)(*) and field maps and provide uniform spatial resolution. For fMRI data with the same temporal frame rate as data collected for T(2)(*)-weighted imaging the resulting R(2)(*) maps performed comparably to T(2)(*)-weighted images in activation detection while also correcting for spatially global and local temporal changes in off-resonance.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…