• Spinal cord · Jul 2014

    Sodium hyaluronate-CNTF gelatinous particles promote axonal growth, neurogenesis and functional recovery after spinal cord injury.

    • N Wang, S Zhang, A F Zhang, Z Y Yang, and X G Li.
    • Department of Neurobiology and Beijing Institute for Neuroscience, Capital Medical University, Beijing, China.
    • Spinal Cord. 2014 Jul 1;52(7):517-23.

    ObjectivesCurrently, effective therapeutic strategy for spinal cord injury (SCI) is not clinically available. To establish a better method that may help repair the injured spinal cord, sodium hyaluronate-ciliary neurotrophic factor (CNTF) gelatinous particles were generated.MethodsA segment of spinal cord tissue was excised to form a 2.5-mm-long cavity at thoracic level in an adult rat, and sodium hyaluronate-CNTF gelatinous particles were implanted into the lesion cavity. The recovery of the injured spinal cord was evaluated by immunohistochemistry, nerve tracing, electrophysiological test and Basso-Beattie-Bresnahan locomotor rating scale.ResultsOpen-field locomotion of the sodium hyaluronate-CNTF rats was significantly enhanced up to 12 weeks postoperation. Together with the evidence of enhanced cortical motor evoked potentials and cortical somatosensory evoked potentials in the sodium hyaluronate-CNTF group, these findings suggested a powerful functional recovery component. Immunohistochemical analyses suggested that the functional recovery might be attributable partly to an increase in axonal regrowth as well as in replenishment of β-tubulin-III-positive neuron-like cells.ConclusionSodium hyaluronate-CNTF gelatinous particles may provide an effective method for treating SCI.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,624,503 articles already indexed!

We guarantee your privacy. Your email address will not be shared.