• Clin. Exp. Pharmacol. Physiol. · Aug 2010

    Functional impact of the hyperpolarization-activated current on the excitability of myelinated A-type vagal afferent neurons in the rat.

    • Yu-Hong Zhou, Li-Hua Sun, Zhen-Hong Liu, Guixue Bu, Xiao-Ping Pang, Shi-Chao Sun, Guo-Fen Qiao, Bai-Yan Li, and John H Schild.
    • Department of Pharmacology, Harbin Medical University, Harbin, China.
    • Clin. Exp. Pharmacol. Physiol. 2010 Aug 1;37(8):852-61.

    Abstract1. The hyperpolarization-induced, cation-selective current I(h) is widely observed in peripheral sensory neurons of the vagal and dorsal root ganglia, but the peak magnitude and voltage- and time-dependent properties of this current vary widely across afferent fibre type. 2. Using patch clamp investigations of rat isolated vagal ganglion neurons (VGN) identified as myelinated A-type afferents, we established a compendium of functional correlates between changes in membrane potential and the dynamic discharge properties of these sensory neurons as a result of the controlled recruitment of I(h) using the current clamp technique. 3. Two robust responses were observed in response to hyperpolarizing step currents: (i) upon initiation of the negative step current, there was a rapid hyperpolarization of membrane potential followed by a depolarizing voltage sag (DVS) towards a plateau in membrane potential as a result of steady state recruitment of I(h); and (ii) upon termination of the negative step current, there was a rapid return to the pretest resting membrane potential that often led to spontaneous action potential discharge. These data were strongly correlated (r(2) > 0.9) with a broad compendium of dynamic discharge characteristics in these A-type VGN. 4. In response to depolarizing step currents of increasing magnitude, the discharge frequency of the A-type VGN responded with increases in the rate of sustained repetitive discharge. Upon termination of the depolarizing step current, there was a post-excitatory membrane hyperpolarization of a magnitude that was strongly correlated with action potential discharge rate (r(2) > 0.9). 5. Application of the selective hyperpolarization-activated cyclic nucleotide gated (HCN) channel blockers ZD7288 (10 micromol/L) or CsCl (1.0 mmol/L) abolished I(h) and all of the aforementioned functional correlates. In addition to reducing the excitability of the A-type VGN to step depolarizing currents. 6. Because there is increasing evidence that the HCN channel current may represent a valid target for pharmacological intervention, the quantitative relationships described in the present study could potentially help guide the molecular and/or chemical modification of HCN channel gating properties to effect a particular outcome in VGN discharge properties, ideally well beyond merely selective blockade of a particular HCN channel subtype.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.