• Neuroscience · Sep 2010

    Laminae-specific distribution of alpha-subunits of voltage-gated sodium channels in the adult rat spinal cord.

    • T Fukuoka, K Kobayashi, and K Noguchi.
    • Department of Anatomy and Neuroscience, Hyogo College of Medicine, 1-1 Mukogawa-cho, Nishinomiya, Hyogo 663-8501, Japan. tfukuoka@hyo-med.ac.jp
    • Neuroscience. 2010 Sep 1;169(3):994-1006.

    AbstractWhile the voltage-gated sodium channels (VGSCs) are the key molecules for neuronal activities, the precise distribution of them in spinal cord is not clear in previous studies. We examined the expression of mRNAs for alpha-subunits of VGSC (Navs) in adult rat spinal cord before and 7 days after L5 spinal nerve ligation (SPNL) or complete Freund's adjuvant (CFA)-induced paw inflammation by in situ hybridization histochemistry, reverse transcription-polymerase chain reaction, and immunohistochemistry. Nav1.1 and Nav1.6 mRNAs were present in all laminae, except for lamina II, including the spinothalamic tract neurons in lamina I identified by retrograde tracing of Fluoro-gold. Nav1.2 mRNA was predominantly observed in the superficial layers (laminae I, II), and Nav1.3 mRNA was more restricted to these layers. All these transcripts were expressed by the neurons characterized by immunostaining for neuron-specific nuclear protein. Nav1.7 mRNA was selectively expressed by a half of motoneurons in lamina IX. No signals for Nav1.8 or Nav1.9 mRNAs were detected. Immunohistochemistry for Nav1.1, Nav1.2, Nav1.6, and Nav1.7 proteins verified some of these neuronal distributions. L5 SPNL decreased Nav1.1 and Nav1.6 mRNAs, and increased Nav1.3 and Nav1.7 mRNAs in the axotomized spinal motoneurons, without any changes in other laminae of L4-6 spinal segments. Intradermal injection of CFA did not cause any transcriptional change. Our findings demonstrate that spinal neurons have different compositions of VGSCs according to their location in laminae. Pathophysiological changes of spinal neuronal activity may due to post-transcriptional changes of VGSCs. Comparison with our previous data concerning the subpopulation-specific distribution of Nav transcripts in primary afferent neurons provides potentially specific targets for local analgesics at the peripheral nerve and spinal levels.Copyright (c) 2010 IBRO. Published by Elsevier Ltd. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?

    User can't be blank.

    Content can't be blank.

    Content is too short (minimum is 15 characters).

    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.