• Brain research bulletin · Dec 2006

    Functional changes in the activity of cerebellum and frontostriatal regions during externally and internally timed movement in Parkinson's disease.

    • Antonio Cerasa, Gisela E Hagberg, Antonella Peppe, Marta Bianciardi, M Cecilia Gioia, Alberto Costa, Alessandro Castriota-Scanderbeg, Carlo Caltagirone, and Umberto Sabatini.
    • Neuroimaging Laboratory, Fondazione Santa Lucia, IRCCS, 00179 Rome, Italy. a.cerasa@isn.cnr.it
    • Brain Res. Bull. 2006 Dec 11;71(1-3):259-69.

    AbstractWe used fMRI to investigate the neurofunctional basis of externally and internally timed movements in Parkinson's disease (PD) patients. Ten PD patients whose medication had been withheld for at least 18h and 11 age- and sex-matched healthy controls were scanned while performing continuation paradigm with a visual metronome. Compared with the controls, PD patients displayed an intact capability to store and reproduce movement frequencies but with a significantly increased movement latencies. No differences in BOLD response were found in both groups when comparing the continuation with the preceding synchronization phase and viceversa, except for activity in visually related regions. Relative to healthy controls during the synchronization phase, PD patients exhibited an overall signal increase in the cerebellum and frontostriatal circuit (putamen, SMA and thalamus) activity together with specific brain areas (right inferior frontal gyrus and insula cortex) that are also implicated in primary timekeeper processes. By contrast, in the continuation phase the only neural network involved to a greater extent by the PD group was the cerebello-thalamic pathway. The lack of neurofunctional differences between the two timing phases suggests that rhythmic externally and internally guided movements engage similar neural networks in PD and matched healthy controls. Moreover, between-group comparison indicates that PD patients OFF medication may compensate for their basal ganglia-cortical loop's dysfunction using different motor pathways involving cerebellum and basal ganglia relays during the two phases of rhythmic movement.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.