• Aviat Space Envir Md · Dec 2007

    Oxygen administration, cerebral blood flow velocity, and dynamic cerebral autoregulation.

    • Naoko Nishimura, Ken-ichi Iwasaki, Yojiro Ogawa, and Shigeki Shibata.
    • Department of Social Medicine, Division of Hygiene and Space Medicine, Nihon University School of Medicine, Tokyo, Japan.
    • Aviat Space Envir Md. 2007 Dec 1;78(12):1121-7.

    IntroductionHyperoxia is reported to decrease steady-state cerebral blood flow (CBF). In addition, dynamic cerebral autoregulation would be altered. Hyperoxia may improve dynamic cerebral autoregulation, contrary to hypoxia. However, no previous studies have examined changes in steady-state CBF velocity (CBFV) and alterations of dynamic cerebral autoregulation during acute exposure to hyperoxia. We, therefore, evaluated dynamic cerebral autoregulation simultaneously with steady-state CBFV during stepwise hyperoxia under oxygen administration.MethodsThere were eight healthy volunteers who were examined under normoxic (21% O2) and hyperoxic conditions in stepwise fashion to 40%, 70%, and 100% O2. Mean blood pressure (MBP) in the radial artery was measured via tonometry, and CBFV in the middle cerebral artery was measured by transcranial Doppler ultrasonography. Dynamic cerebral autoregulation was assessed by spectral and transfer function analysis of beat-to-beat changes in MBP and CBFV.ResultsEnd-tidal CO2 decreased significantly at 70% and 100% O2. Steady-state CBFV decreased significantly at F1O2 > or = 40%, while MBP was unchanged. Associated with these changes, cerebral vascular resistance index increased at 70% and 100% O2. Transfer function gain and coherence remained unchanged at all levels of F1O2.DiscussionThese results suggest that hyperoxemia and hypocapnia reduce steady-state CBFV and increase cerebral vascular resistance during oxygen administration. This reduction in steady-state CBFV occurs even during mild hyperoxia < or = 40% O2 and becomes obvious at 70% O2 with hypocapnia. However, dynamic cerebral autoregulation may remain unchanged during hyperoxia, even with apparent changes in steady-state CBFV.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.