• NeuroImage · Aug 2010

    Randomized Controlled Trial

    Determining the optimal level of smoothing in cortical thickness analysis: a hierarchical approach based on sequential statistical thresholding.

    • Jorge L Bernal-Rusiel, Mercedes Atienza, and Jose L Cantero.
    • Spanish Network of Excellence for Research on Neurodegenerative Diseases (CIBERNED), University Pablo de Olavide, Seville, Spain.
    • Neuroimage. 2010 Aug 1;52(1):158-71.

    AbstractThe extent of smoothing applied to cortical thickness maps critically influences sensitivity, anatomical precision and resolution of statistical change detection. Theoretically, it could be optimized by increasing the trade-off between vertex-wise sensitivity and specificity across several levels of smoothing. But to date neither parametric nor nonparametric methods are able to control the error at the vertex level if the null hypothesis is rejected after smoothing of cortical thickness maps. To overcome these drawbacks, we applied sequential statistical thresholding based on a simple hierarchical model. This methodology aims at controlling erroneous detections; firstly at the level of clusters, over smoothed statistical maps; and secondly at the vertex level, over unsmoothed statistical maps, by applying an adaptive false discovery rate (FDR) procedure to clusters previously detected. The superior performance of the proposed methodology over other conventional procedures was demonstrated in simulation studies. As expected, only the hierarchical method yielded a predictable false discovery proportion near the predefined FDR q-value for any smoothing level at the same time as being as sensitive as the others at the optimal setting. It was therefore the only method able to approximate the optimal size of spatial smoothing when the true change was assumed unknown. The hierarchical method was further validated in a cross-sectional study comparing moderate Alzheimer's disease (AD) patients with healthy elderly subjects. Results suggest that the extent of cortical thinning reported in previous AD studies might be artificially inflated by the choice of inadequate smoothing. In these cases, interpretation should be based on the location of local maxima of suprathreshold regions rather than on the spatial extent of the detected signal in the statistical parametric map.Copyright 2010 Elsevier Inc. All rights reserved.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…