• J Trauma Acute Care Surg · Dec 2013

    Comparative Study

    Differential effects of fresh frozen plasma and normal saline on secondary brain damage in a large animal model of polytrauma, hemorrhage and traumatic brain injury.

    • John O Hwabejire, Ayesha M Imam, Guang Jin, Baoling Liu, Yongqing Li, Martin Sillesen, Cecilie H Jepsen, Jennifer Lu, Marc A deMoya, and Hasan B Alam.
    • From the Division of Trauma, Emergency Surgery and Surgical Critical Care (J.O.H., A.M.I., G.J., B.L., Y.L., M.S., C.H.J., J.L., M.A.D., H.B.A.), Massachusetts General Hospital and Harvard Medical School, Boston, Massachusetts; and the Department of Surgery (G.J., B.L., H.B.A.), University of Michigan Hospital, Ann Arbor, Michigan.
    • J Trauma Acute Care Surg. 2013 Dec 1;75(6):968-74; discussion 974-5.

    BackgroundWe have previously shown that the extent of traumatic brain injury (TBI) in large animal models can be reduced with early infusion of fresh frozen plasma (FFP), but the precise mechanisms remain unclear. In this study, we investigated whether resuscitation with FFP or normal saline differed in their effects on cerebral metabolism and excitotoxic secondary brain injury in a model of polytrauma, TBI, and hemorrhagic shock.MethodsYorkshire swine (n = 10) underwent Grade III liver injury, rib fracture, standardized TBI, and volume-controlled hemorrhage, (40% ± 5%) and were randomly resuscitated with either FFP or normal saline. Hemodynamic parameters and brain oxygenation were continuously monitored, while microdialysis was used to measure the brain concentrations of pyruvate, lactate, glutamate, and glycerol at baseline; 1 hour and 2 hours after shock; immediate postresuscitation (PR); as well as 2, 4, and 6 hours PR. Cells from the injured hemisphere were separated into mitochondrial and cytosolic fractions and analyzed for activity of the pyruvate dehydrogenase complex (PDH).ResultsThere were no baseline differences in cerebral perfusion pressure, brain oxygenation, as well as concentrations of pyruvate, lactate, glutamate, and glycerol between the groups. At 2 hours and 4 hours PR, the FFP group had significantly higher cerebral perfusion pressures (52 [5] mm Hg vs. 43 [2] mm Hg, p = 0.016; and 50 [7] mm Hg vs. 37 [1] mm Hg, p = 0.008, respectively). There was a sustained and significant (p < 0.05) drop in the glutamate and glycerol levels in the FFP group, implying a decrease in excitotoxicity and brain damage, respectively. Mitochondrial PDH activity was significantly higher (2,666.2 [638.2] adjusted volume INT × mm vs. 1,293.4 [88.8] adjusted volume INT × mm, p = 0.008), and cytosolic PDH activity was correspondingly lower (671.4 [209.2] adjusted volume INT × mm vs. 3070.7 [484.3] adjusted volume INT × mm, p < 0.001) in the FFP group, suggesting an attenuation of mitochondrial dysfunction and permeability.ConclusionIn this model of TBI, polytrauma, and hemorrhage, FFP resuscitation confers neuroprotection by improving cerebral perfusion, diminishing glutamate-mediated excitotoxic secondary brain injury and reducing mitochondrial dysfunction.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…