-
Physiological measurement · May 2006
Factors limiting the application of electrical impedance tomography for identification of regional conductivity changes using scalp electrodes during epileptic seizures in humans.
- L Fabrizi, M Sparkes, L Horesh, J F Perez-Juste Abascal, A McEwan, R H Bayford, R Elwes, C D Binnie, and D S Holder.
- Department of Medical Physics and Bioengineering, University College London, London WC1E 6BT, UK. l.fabrizi@ucl.ac.uk
- Physiol Meas. 2006 May 1;27(5):S163-74.
AbstractElectrical impedance tomography (EIT) has the potential to produce images during epileptic seizures. This might improve the accuracy of the localization of epileptic foci in patients undergoing presurgical assessment for curative neurosurgery. It has already been shown that impedance increases by up to 22% during induced epileptic seizures in animal models, using cortical or implanted electrodes in controlled experiments. The purpose of this study was to determine if reproducible raw impedance changes and EIT images could be collected during epileptic seizures in patients who were undergoing observation with video-electroencephalography (EEG) telemetry as part of evaluation prior to neurosurgery to resect the region of brain causing the epilepsy. A secondary purpose was to develop an objective method for processing and evaluating data, as seizures arose at unpredictable times from a noisy baseline. Four-terminal impedance measurements from 258 combinations were collected continuously using 32 EEG scalp electrodes in 22 seizure episodes from 7 patients during their presurgical assessment together with the standard EEG recordings. A reliable method for defining the pre-seizure baseline and recording impedance data and EIT images was developed, in which EIT and EEG could be acquired simultaneously after filtering of EIT artefact from the EEG signal. Fluctuations of several per cent over minutes were observed in the baseline between seizures. During seizures, boundary voltage changes diverged with a standard deviation of 1-54% from the baseline. No reproducible changes with the expected time course of some tens of seconds and magnitude of about 0.1% could be reliably measured. This demonstrates that it is feasible to acquire EIT images in parallel with standard EEG during presurgical assessment but, unfortunately, expected EIT changes on the scalp of about 0.1% are swamped by much larger movement and systematic artefact. Nevertheless, EIT has the unique potential to provide invaluable neuroimaging data for this purpose and may still become possible with improvements in electrode design and instrumentation.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.