-
- Kazuharu Arakawa and Masaru Tomita.
- Institute for Advanced Biosciences, Keio University, Fujisawa, Kanagawa, Japan. gaou@sfc.keio.ac.jp
- Methods Mol. Biol. 2013 Jan 1;985:459-70.
AbstractBy the combinations of high-throughput analytical technologies in the fields of transcriptomics, proteomics, and metabolomics, we are now able to gain comprehensive and quantitative snapshots of the intracellular processes. Dynamic intracellular activities and their regulations can be elucidated by systematic observation of these multi-omics data. On the other hand, careful statistical analysis is necessary for such integration, since each of the omics layers as well as the specific analytical methodologies harbor different levels of noise and variations. Moreover, interpretation of such multitude of data requires an intuitive pathway context. Here we describe such statistical methods for the integration and comparison of multi-omics data, as well as the computational methods for pathway reconstruction, ID conversion, mapping, and visualization that play key roles for the efficient study of multi-omics information.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.