• NeuroImage · Feb 2007

    Anatomically constrained region deformation for the automated segmentation of the hippocampus and the amygdala: Method and validation on controls and patients with Alzheimer's disease.

    • Marie Chupin, A Romain Mukuna-Bantumbakulu, Dominique Hasboun, Eric Bardinet, Sylvain Baillet, Serge Kinkingnéhun, Louis Lemieux, Bruno Dubois, and Line Garnero.
    • Department of Clinical and Experimental Epilepsy, Institute of Neurology, UCL, UK. m.chupin@ionucl.ac.uk
    • Neuroimage. 2007 Feb 1;34(3):996-1019.

    AbstractWe describe a new algorithm for the automated segmentation of the hippocampus (Hc) and the amygdala (Am) in clinical Magnetic Resonance Imaging (MRI) scans. Based on homotopically deforming regions, our iterative approach allows the simultaneous extraction of both structures, by means of dual competitive growth. One of the most original features of our approach is the deformation constraint based on prior knowledge of anatomical features that are automatically retrieved from the MRI data. The only manual intervention consists of the definition of a bounding box and positioning of two seeds; total execution time for the two structures is between 5 and 7 min including initialisation. The method is evaluated on 16 young healthy subjects and 8 patients with Alzheimer's disease (AD) for whom the atrophy ranged from limited to severe. Three aspects of the performances are characterised for validating the method: accuracy (automated vs. manual segmentations), reproducibility of the automated segmentation and reproducibility of the manual segmentation. For 16 young healthy subjects, accuracy is characterised by mean relative volume error/overlap/maximal boundary distance of 7%/84%/4.5 mm for Hc and 12%/81%/3.9 mm for Am; for 8 Alzheimer's disease patients, it is 9%/84%/6.5 mm for Hc and 15%/76%/4.5 mm for Am. We conclude that the performance of this new approach in data from healthy and diseased subjects in terms of segmentation quality, reproducibility and time efficiency compares favourably with that of previously published manual and automated segmentation methods. The proposed approach provides a new framework for further developments in quantitative analyses of the pathological hippocampus and amygdala in MRI scans.

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

What will the 'Medical Journal of You' look like?

Start your free 21 day trial now.

We guarantee your privacy. Your email address will not be shared.