• J Biomech Eng · Dec 2010

    Characterizing the interaction among bullet, body armor, and human and surrogate targets.

    • Weixin Shen, Yuqing Niu, Lucy Bykanova, Peter Laurence, and Norman Link.
    • L-3 Communications Applied Technology, 3394 Carmel Mountain Road, San Diego, CA 92121, USA.
    • J Biomech Eng. 2010 Dec 1;132(12):121001.

    AbstractThis study used a combined experimental and modeling approach to characterize and quantify the interaction among bullet, body armor, and human surrogate targets during the 10-1000 μs range that is crucial to evaluating the protective effectiveness of body armor against blunt injuries. Ballistic tests incorporating high-speed flash X-ray measurements were performed to acquire the deformations of bullets and body armor samples placed against ballistic clay and gelatin targets with images taken between 10 μs and 1 ms of the initial impact. Finite element models (FEMs) of bullet, armor, and gelatin and clay targets were developed with material parameters selected to best fit model calculations to the test measurements. FEMs of bullet and armor interactions were then assembled with a FEM of a human torso and FEMs of clay and gelatin blocks in the shape of a human torso to examine the effects of target material and geometry on the interaction. Test and simulation results revealed three distinct loading phases during the interaction. In the first phase, the bullet was significantly slowed in about 60 μs as it transferred a major portion of its energy into the body armor. In the second phase, fibers inside the armor were pulled toward the point of impact and kept on absorbing energy until about 100 μs after the initial impact when energy absorption reached its peak. In the third phase, the deformation on the armor's back face continued to grow and energies inside both armor and targets redistributed through wave propagation. The results indicated that armor deformation and energy absorption in the second and third phases were significantly affected by the material properties (density and stiffness) and geometrical characteristics (curvature and gap at the armor-target interface) of the targets. Valid surrogate targets for testing the ballistic resistance of the armor need to account for these factors and produce the same armor deformation and energy absorption as on a human torso until at least about 100 μs (maximum armor energy absorption) or more preferably 300 μs (maximum armor deformation).

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.