• J. Pharmacol. Exp. Ther. · Aug 2007

    Benzodiazepine withdrawal-induced glutamatergic plasticity involves up-regulation of GluR1-containing alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid receptors in Hippocampal CA1 neurons.

    • Jun Song, Guofu Shen, L John Greenfield, and Elizabeth I Tietz.
    • Department of Physiology and Pharmacology, University of Toledo College of Medicine, Health Science Campus Formerly Medical University of Ohio, Toledo, OH 43614, USA.
    • J. Pharmacol. Exp. Ther. 2007 Aug 1;322(2):569-81.

    AbstractModification of glutamatergic synaptic function, a mechanism central to neuronal plasticity, may also mediate long-term drug effects, including dependence and addiction. Benzodiazepine withdrawal results in increased glutamatergic strength, but whether alpha-amino-3-hydroxy-5-methylisoxazole-4-propionic acid (AMPA) receptors (AMPARs) are functionally and structurally remodeled during benzodiazepine withdrawal is uncertain. Whole-cell recordings of rat hippocampal CA1 neurons, either acutely dissociated or in hippocampal slices, revealed that AMPAR function was enhanced up to 50% during flurazepam (FZP) withdrawal, without changes in whole-cell channel kinetic properties. Agonist-elicited AMPA currents showed a negative shift in rectification in the presence of spermine, suggesting augmented membrane incorporation of glutamate receptor (GluR) 2-lacking AMPARs. As GluR1-containing AMPARs are critical for activity-dependent alterations in excitatory strength, we sought to determine whether changes in GluR1 subunit distribution in CA1 neurons occurred during benzodiazepine withdrawal. Confocal image analysis revealed that FZP withdrawal promoted GluR1 subunit incorporation into somatic and proximal dendritic membranes of CA1 neurons without GluR2 subunit alterations. Findings of immunoblot studies were consistent with immunofluorescent studies indicating increased GluR1, but not GluR2, subunit protein levels in cytosolic, crude membrane and postsynaptic density-enriched fractions from CA1 minislices. As with long-term potentiation (LTP), the FZP-withdrawal-induced GluR1 incorporation into CA1 neuron membranes may require the GluR1-trafficking protein, synapse-associated protein 97, which was also elevated in membrane-associated fractions. Together, our findings provide evidence that during FZP withdrawal, increased membrane incorporation of GluR1-containing AMPARs and associated up-regulation of AMPAR functions in hippocampal CA1 pyramidal neurons share fundamental similarities with the mechanisms underlying LTP. This implies that glutamatergic neuronal remodeling observed in LTP also subserves physiological adaptations to drug withdrawal.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…

Want more great medical articles?

Keep up to date with a free trial of metajournal, personalized for your practice.
1,694,794 articles already indexed!

We guarantee your privacy. Your email address will not be shared.