• Ieee T Inf Technol B · May 2008

    An efficient motion-resistant method for wearable pulse oximeter.

    • Yong-Sheng Yan and Yuan-Ting Zhang.
    • Joint Research Centre for Biomedical Engineering, Department of Electronic Engineering, The Chinese University of Hong Kong, Hong Kong. ysyan@ee.cuhk.edu.hk
    • Ieee T Inf Technol B. 2008 May 1;12(3):399-405.

    AbstractReduction of motion artifact and power saving are crucial in designing a wearable pulse oximeter for long-term telemedicine application. In this paper, a novel algorithm, minimum correlation discrete saturation transform (MCDST) has been developed for the estimation of arterial oxygen saturation (SaO2), based on an optical model derived from photon diffusion analysis. The simulation shows that the new algorithm MCDST is more robust under low SNRs than the clinically verified motion-resistant algorithm discrete saturation transform (DST). Further, the experiment with different severity of motions demonstrates that MCDST has a slightly better performance than DST algorithm. Moreover, MCDST is more computationally efficient than DST because the former uses linear algebra instead of the time-consuming adaptive filter used by latter, which indicates that MCDST can reduce the required power consumption and circuit complexity of the implementation. This is vital for wearable devices, where the physical size and long battery life are crucial.

      Pubmed     Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…