Ieee T Inf Technol B
-
Reduction of motion artifact and power saving are crucial in designing a wearable pulse oximeter for long-term telemedicine application. In this paper, a novel algorithm, minimum correlation discrete saturation transform (MCDST) has been developed for the estimation of arterial oxygen saturation (SaO2), based on an optical model derived from photon diffusion analysis. ⋯ Moreover, MCDST is more computationally efficient than DST because the former uses linear algebra instead of the time-consuming adaptive filter used by latter, which indicates that MCDST can reduce the required power consumption and circuit complexity of the implementation. This is vital for wearable devices, where the physical size and long battery life are crucial.
-
Ieee T Inf Technol B · Nov 2007
Bi-Fi: an embedded sensor/system architecture for REMOTE biological monitoring.
Wireless-enabled processor modules intended for communicating low-frequency phenomena (i.e., temperature, humidity, and ambient light) have been enabled to acquire and transmit multiple biological signals in real time, which has been achieved by using computationally efficient data acquisition, filtering, and compression algorithms, and interfacing the modules with biological interface hardware. The sensor modules can acquire and transmit raw biological signals at a rate of 32 kb/s, which is near the hardware limit of the modules. Furthermore, onboard signal processing enables one channel, sampled at a rate of 4000 samples/s at 12-bit resolution, to be compressed via adaptive differential-pulse-code modulation (ADPCM) and transmitted in real time. ⋯ The system also acquires, filters, and transmits oxygen saturation and pulse rate via a commercial-off-the-shelf interface board. The system architecture can be configured for performing real-time nonobtrusive biological monitoring of humans or rodents. This paper demonstrates that low-power, computational, and bandwidth-constrained wireless-enabled platforms can indeed be leveraged for wireless biosignal monitoring.
-
Telemedicine helps developing countries deliver medical services to underdeveloped rural areas where health resources are deficient. Yet telemedicine diffusion in the largest developing country, China, remains a secret to the world. This paper examines the evolution of telemedicine in China, analyzes factors influencing the diffusion of telemedicine, and provides recommendations to overcome obstacles to telemedicine.
-
Ieee T Inf Technol B · Oct 2006
Multiple image watermarking applied to health information management.
Information technology advances have brought forth new challenges in healthcare information management, due to the vast amount of medical data that needs to be efficiently stored, retrieved, and distributed, and the increased security threats that explicitly have to be addressed. The paper discusses the perspectives of digital watermarking in a range of medical data management and distribution issues, and proposes a complementary and/or alternative tool that simultaneously addresses medical data protection, archiving, and retrieval, as well as source and data authentication. The scheme imperceptibly embeds in medical images multiple watermarks conveying patient's personal and examination data, keywords for information retrieval, the physician's digital signature for authentication, and a reference message for data integrity control. Experimental results indicate the efficiency and transparency of the scheme, which conforms to the strict requirements that apply to regions of diagnostic significance.
-
Ieee T Inf Technol B · Jul 2006
Combining algorithms in automatic detection of QRS complexes in ECG signals.
QRS complex and specifically R-Peak detection is the crucial first step in every automatic electrocardiogram analysis. Much work has been carried out in this field, using various methods ranging from filtering and threshold methods, through wavelet methods, to neural networks and others. Performance is generally good, but each method has situations where it fails. ⋯ In particular, we introduce parameters allowing to balance the contribution of the individual algorithms; these parameters are estimated in a data-driven way. Experimental results and analysis are provided on the Massachusetts Institute of Technology-Beth Israel Hospital (MIT-BIH) Arrhythmia Database. We show that our combination approach outperforms both individual algorithms.