• J. Neurophysiol. · Feb 2008

    Cortical and spinal modulation of antagonist coactivation during a submaximal fatiguing contraction in humans.

    • Morgan Lévénez, S Jayne Garland, Malgorzata Klass, and Jacques Duchateau.
    • Laboratory of Applied Biology, Université Libre de Bruxelles, Brussels, Belgium.
    • J. Neurophysiol. 2008 Feb 1;99(2):554-63.

    AbstractThis study investigates the control mechanisms at the cortical and spinal levels of antagonist coactivation during a submaximal fatiguing contraction of the elbow flexors at 50% of maximal voluntary contraction (MVC). We recorded motor-evoked potentials in the biceps brachii and triceps brachii muscles in response to magnetic stimulation of the motor cortex (MEP) and corticospinal tract (cervicomedullary motor-evoked potentials--CMEPs), as well as the Hoffmann reflex (H-reflex) and maximal M-wave (Mmax) elicited by electrical stimulation of the brachial plexus, before, during, and after the fatigue task. The results showed that although the coactivation ratio did not change at task failure, the MVC torque produced by the elbow flexors declined by 48% (P < 0.01) with no change in MVC torque for the elbow extensors. While the MEP and CMEP areas (normalized to Mmax) of the biceps brachii increased ( approximately 50%) over the first 40% of the time to task failure and then plateaued, both responses in the triceps brachii increased ( approximately 150-180%) gradually throughout the fatigue task. In contrast to the monotonic increase in the MEP and CMEP of the antagonist muscles, the H-reflex of the triceps brachii exhibited a biphasic modulation, increasing during the first part of the contraction before declining subsequently to 65% of its initial value. Collectively, these results suggest that the level of coactivation during a fatiguing contraction is mediated by supraspinal rather than spinal mechanisms and involves differential control of agonist and antagonist muscles.

      Pubmed     Free full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…