-
Philos. Trans. R. Soc. Lond., B, Biol. Sci. · Oct 2014
ReviewGraph analysis of functional brain networks: practical issues in translational neuroscience.
- Fabrizio De Vico Fallani, Jonas Richiardi, Mario Chavez, and Sophie Achard.
- INRIA Paris-Rocquencourt, ARAMIS team, Paris, France CNRS, UMR-7225, Paris, France INSERM, U1227, Paris, France Institut du Cerveau et de la Moelle épinière, Paris, France Univ. Sorbonne UPMC, UMR S1127, Paris, France fabrizio.devicofallani@gmail.com.
- Philos. Trans. R. Soc. Lond., B, Biol. Sci. 2014 Oct 5;369(1653).
AbstractThe brain can be regarded as a network: a connected system where nodes, or units, represent different specialized regions and links, or connections, represent communication pathways. From a functional perspective, communication is coded by temporal dependence between the activities of different brain areas. In the last decade, the abstract representation of the brain as a graph has allowed to visualize functional brain networks and describe their non-trivial topological properties in a compact and objective way. Nowadays, the use of graph analysis in translational neuroscience has become essential to quantify brain dysfunctions in terms of aberrant reconfiguration of functional brain networks. Despite its evident impact, graph analysis of functional brain networks is not a simple toolbox that can be blindly applied to brain signals. On the one hand, it requires the know-how of all the methodological steps of the pipeline that manipulate the input brain signals and extract the functional network properties. On the other hand, knowledge of the neural phenomenon under study is required to perform physiologically relevant analysis. The aim of this review is to provide practical indications to make sense of brain network analysis and contrast counterproductive attitudes.© 2014 The Author(s) Published by the Royal Society. All rights reserved.
Notes
Knowledge, pearl, summary or comment to share?You can also include formatting, links, images and footnotes in your notes
- Simple formatting can be added to notes, such as
*italics*
,_underline_
or**bold**
. - Superscript can be denoted by
<sup>text</sup>
and subscript<sub>text</sub>
. - Numbered or bulleted lists can be created using either numbered lines
1. 2. 3.
, hyphens-
or asterisks*
. - Links can be included with:
[my link to pubmed](http://pubmed.com)
- Images can be included with:
![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
- For footnotes use
[^1](This is a footnote.)
inline. - Or use an inline reference
[^1]
to refer to a longer footnote elseweher in the document[^1]: This is a long footnote.
.