• J. Mol. Cell. Cardiol. · Dec 2004

    Review

    Hypoxic pulmonary vasoconstriction: redox regulation of O2-sensitive K+ channels by a mitochondrial O2-sensor in resistance artery smooth muscle cells.

    • Evangelos D Michelakis, Bernard Thébaud, E Kenneth Weir, and Stephen L Archer.
    • Cardiology Division, Department of Medicine, University of Alberta, WMC 2C2,36, 8440 112th Street, Edmonton, Alta., Canada T6G 2B7.
    • J. Mol. Cell. Cardiol. 2004 Dec 1;37(6):1119-36.

    AbstractHypoxic pulmonary vasoconstriction (HPV) is a widely-conserved mechanism for matching ventilation and perfusion that optimizes systemic PO(2). HPV is elicited by moderate alveolar hypoxia through a mechanism that is intrinsic to the pulmonary circulation, particularly the resistance pulmonary arteries (PA), and is robust even in isolated perfused lungs. Although modulated by the endothelium, HPV persists in denuded PA rings and PA smooth muscle cells (PASMC). Beginning within seconds of hypoxia, HPV plateaus in minutes and persists for hours. During focal hypoxia (e.g. atelectasis), HPV is restricted to the vascular segments serving hypoxic lobes, and diverts blood to better-ventilated segments without causing pulmonary hypertension (PHT). However, with global hypoxia, as occurs at high altitude or in the fetal lung, HPV increases pulmonary vascular resistance (PVR) and may contribute to PHT. This review focuses on a comprehensive Redox Theory of HPV but considers relevant modulatory factors (endothelin), triggering stimuli (cyclic ADP-ribose-induced release of sarcoplasmic reticulum (SR) Ca(2+)) and sustaining pathways (Rho kinase-modulated Ca(2+) sensitization of the contractile apparatus). The Redox Theory proposes that an O(2)-sensor in resistance PASMC (complexes I and III of the mitochondrial electron transport chain (ETC)) generates reactive O(2) species (ROS) in proportion to PO(2). During normoxia, a redox mediator, like hydrogen peroxide (H(2)O(2)), maintains voltage-gated O(2)-sensitive K(+) channels (Kv) in an oxidized open state. Hypoxic withdrawal of ROS inhibits Kv channels, thereby depolarizing PASMCs, activating L-type voltage-gated Ca(2+) channels, enhancing Ca(2+) influx and promoting vasoconstriction. The role of O(2)-sensitive K(+) channels is conserved in most specialized O(2)-sensitive tissues, including the ductus arteriosus and carotid body. The unique occurrence of hypoxic vasoconstriction in the pulmonary circulation relates to the colocalization of an O(2)-sensor and O(2)-sensitive Kv channels in resistance PAs. HPV has relevance to human physiology, pathophysiology (high altitude pulmonary edema (HAPE) and PHT) and therapy (single lung anesthesia).

      Pubmed     Full text   Copy Citation     Plaintext  

      Add institutional full text...

    Notes

     
    Knowledge, pearl, summary or comment to share?
    300 characters remaining
    help        
    You can also include formatting, links, images and footnotes in your notes
    • Simple formatting can be added to notes, such as *italics*, _underline_ or **bold**.
    • Superscript can be denoted by <sup>text</sup> and subscript <sub>text</sub>.
    • Numbered or bulleted lists can be created using either numbered lines 1. 2. 3., hyphens - or asterisks *.
    • Links can be included with: [my link to pubmed](http://pubmed.com)
    • Images can be included with: ![alt text](https://bestmedicaljournal.com/study_graph.jpg "Image Title Text")
    • For footnotes use [^1](This is a footnote.) inline.
    • Or use an inline reference [^1] to refer to a longer footnote elseweher in the document [^1]: This is a long footnote..

    hide…