Journal of molecular and cellular cardiology
-
J. Mol. Cell. Cardiol. · Dec 2004
ReviewHypoxic pulmonary vasoconstriction: redox regulation of O2-sensitive K+ channels by a mitochondrial O2-sensor in resistance artery smooth muscle cells.
Hypoxic pulmonary vasoconstriction (HPV) is a widely-conserved mechanism for matching ventilation and perfusion that optimizes systemic PO(2). HPV is elicited by moderate alveolar hypoxia through a mechanism that is intrinsic to the pulmonary circulation, particularly the resistance pulmonary arteries (PA), and is robust even in isolated perfused lungs. Although modulated by the endothelium, HPV persists in denuded PA rings and PA smooth muscle cells (PASMC). ⋯ The role of O(2)-sensitive K(+) channels is conserved in most specialized O(2)-sensitive tissues, including the ductus arteriosus and carotid body. The unique occurrence of hypoxic vasoconstriction in the pulmonary circulation relates to the colocalization of an O(2)-sensor and O(2)-sensitive Kv channels in resistance PAs. HPV has relevance to human physiology, pathophysiology (high altitude pulmonary edema (HAPE) and PHT) and therapy (single lung anesthesia).